

Achieve Alignment and Commentary:

Yellow highlighted rows indicates a gap in the alignment between the CCSS and NY.

Differences in grade level requirements are indicated in pink when the concept is addressed later in NY than in the CCSS.

CCSS/Current NYS	2018-19 NYS	Notes and Comments
MP.1 Make sense of problems and persevere in		
solving them.		
MP.2 Reason abstractly and quantitatively.		
MP.3 Construct viable arguments and critique		
the reasoning of others.		
MP.4 Model with mathematics.		
MP.5 Use appropriate tools strategically.		
MP.6 Attend to precision.		
MP.7 Look for and make use of structure.		
MP.8 Look for and express regularity in repeated		
reasoning.		
GRADE K		
Counting and Cardinality		
Know number names and the count sequence.	A. Know number names and the count	
	sequence.	
K.CC.1. Count to 100 by ones and by tens.	K.CC.A.1. Count to 100 by ones and by tens.	
K.CC.2. Count forward beginning from a given	K.CC.A.2. Count forward by 1's beginning from	NYS clarified the limitations and the requirement
number within the known sequence (instead of	any given number <mark>within 100</mark> .	to count by 1's.
having to begin at 1).		
K.CC.3. Write numbers from 0 to 20. Represent a	K.CC.A.3 Write numbers from 0 to 20. Represent	
number of objects with a written numeral 0-20	a number of objects with a written numeral 0-20	
(with 0 representing a count of no objects).	(with 0 representing account of no objects).	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Count to tell the number of objects.	B. Count to tell the number of objects.	
K.CC.4. Understand the relationship between numbers and quantities; connect counting to cardinality.	K.CC.B.4. Understand the relationship between numbers and quantities up to 20; connect counting to cardinality.	NYS added a limitation that is consistent with grade level expectations.
K.CC.4a When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object.	K.CC.B.4a. When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object. (1:1 correspondence)	NYS added a vocabulary term.
K.CC.4b Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted.	K.CC.B.4b. Understand that the last number name said tells the number of objects counted, (cardinality). The number of objects is the same regardless of their arrangement or the order in which they were counted.	NYS added a vocabulary term.
K.CC.4c Understand that each successive number name refers to a quantity that is one larger.	K.CC.B.4c. Explore the concept that each successive number name refers to a quantity that is one larger.	NYS changed "understand" to "explore the concept." It is not clear in the glossary of verbs whether this is an even exchange in terms of rigor.
	K.CC.B.4d. Explore the concept of ordinal numbers (first through tenth) to describe the relative position and magnitude of whole numbers.	NYS added a similar standard in the original adaptation of the CCSS. In this draft that standard has been modified to replace "develop" with "explore." This standard is appropriate for inclusion and it was wise to add this at the end of this cluster to avoid coding issues. It is possible that the cluster title should be changed to reflect this new requirement.

CCSS/Current NYS	2018-19 NYS	Notes and Comments
K.CC.5. Count to answer "how many?" questions	K.CC.B.5a. Answer counting questions using as	The NYS change from "or" to "and" may be
about as many as 20 things arranged in a line, a	many as 20 objects arranged in a line, a	taken to mean that the objects must be
rectangular array, or a circle, or as many as 10	rectangular array, and a circle and as many as 10	arranged in all of the ways for each set. This
things in a scattered configuration; given a	objects in a scattered configuration, (e.g., "How	makes the new version of the standard less clear.
number from 1–20, count out that many objects.	many are there?").	
	K.CC.B.5b. Given a number from 1–20, count out	NYS separated the two concepts in the
	that many objects.	compound CCSS version.
Compare numbers.	C. Compare numbers.	
K.CC.6. Identify whether the number of objects	K.CC.C.6. Identify whether the number of objects	NYS put the CCSS example in parentheses and
in one group is greater than, less than, or equal	in one group is more/greater than, fewer/less	made the footnote part of the standard.
to the number of objects in another group, e.g.,	than, or equal/same to the number of objects in	
by using matching and counting strategies.	another group, (e.g., by using matching and	
[Include groups with up to 10 objects.]	counting strategies). Include groups with up to	
	ten objects.	
K.CC.7. Compare two numbers between 1 and	K.CC.C.7. Compare two numbers between 1 and	
10 presented as written numerals.	10 presented as written numerals.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Operations and Algebraic Thinking		
Understand addition as putting together and	A. Understand addition as putting together and	
adding to, and under- stand subtraction as	adding to, and understand subtraction as taking	
taking apart and taking from.	apart and taking from.	
K.OA.1. Represent addition and subtraction with objects, fingers, mental images, drawings, sounds (e.g., claps), acting out situations, verbal explanations, expressions, or equations. [Drawings need not show details, but should show the mathematics in the problem.]	K.OA.A.1. Represent addition and subtraction using objects, fingers, pennies, mental images, drawings, sounds, acting out situations, verbal explanations, expressions, equations or other strategies. Drawings need not show details, but should show the mathematics in the problem.	NYS added "pennies" in the list of required representations. It is not clear how "pennies" are different than objects. It might be clearer to put "including pennies" in parentheses after "objects." This NYS version opened the door to include "other strategies" in the requirement. They also made the CCSS footnote part of the standard, which was intended as a clarification for the teacher rather than a performance objective.
K.OA.2. Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.	K.OA.A.2. Solve addition and subtraction word problems, and add and subtract within 10, (e.g., by using objects or drawings to represent the problem).	
K.OA.3. Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equation (e.g., 5 = 2 + 3 and 5 = 4 + 1).	K.OA.A.3. Decompose numbers less than or equal to 5 into pairs in more than one way, and record each decomposition by a drawing or equation (e.g., 5 = 2 + 3 and 5 = 4 + 1). Explore decomposition within 10.	NYS changed the focus by requiring students to decompose numbers to 5 and "explore decomposition" to 10. The difference between what students should do with numbers less than five and numbers less than 10 is unclear, though a distinction is clearly implied. "Explore," according to the glossary, means that "students will learn the concept" but it is not clear how the differences in expectation would be measured.

CCSS/Current NYS	2018-19 NYS	Notes and Comments
K.OA.4. For any number from 1 to 9, find the number that makes 10 when added to the given number, e.g., by using objects or drawings, and record the answer with a drawing or equation.	K.OA.A.4. Find the number that makes 10 when given a number from 1 to 9, (e.g., by using objects or drawings, and record the answer with a drawing or equation).	Typo: It appears that including the last part of the requirement is inside the parentheses, may be an error. Enclosing it, technically, made it part of the example rather than the standard. Perhaps the closing parenthesis should be in the place of the comma after "objects or drawings."
K.OA.5. Fluently add and subtract within 5.	K.OA.A.5. Fluently add and subtract within 5. Fluency involves a mixture of just knowing some answers, knowing some answers from patterns, and knowing some answers from the use of strategies.	NYS added an explanation of fluency to the standard, presumably for the teacher. The usage here seems to imply that students should think of some elements of adding and subtracting within 5 in different ways. Is it allowable, for example, that students "just know" all of these? This distinction matters for measurability purposes. Also, the explanation, itself, should be in parentheses or added as a "note," as is the case in other NYS (See 1.OA.C.6b, 2.OA.B.2a, 2.NBT.B.5a, etc.). As it is, it appears to be part of the performance objective.
	B. Understand simple patterns.	
	K.OA.B.6. Duplicate, extend, and create simple patterns using concrete objects.	The CCSS does not emphasize patterns. NYS added this standard to follow a progression started in their Pre-K standards. Clarification is needed for consistent application of this standard and for teachers to understand what is meant by "simple patterns."
Numbers and Operations in Base Ten		
Work with numbers 11–19 to gain foundations for place value.	A. Work with numbers 11-19 to gain foundations for place value.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
K.NBT.1. Compose and decompose numbers	K.NBT.A.1. Explore composing and decomposing	NYS removed the requirement to record and
from 11 to 19 into ten ones and some further	of the numbers from 11 to 19 into ten ones and	understand the de/composed numbers and
ones, e.g., by using objects or drawings, and	some further ones, (e.g., by using objects or	changed the performance for this standard to
record each composition or decomposition by a	drawings).	"explore." It is not clear in the glossary of verbs
drawing or equation (e.g., $18 = 10 + 8$);		whether this is an even exchange in terms of
understand that these numbers are composed of		rigor.
ten ones and one, two, three, four, five, six,		
seven, eight, or nine ones.		

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Measurement and Data		
Describe and compare measurable attribute	A. Describe and compare measurable attributes.	
K.MD.1. Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object.	K.MD.A.1. Describe measurable attributes of an object(s), such as length or weight, using appropriate vocabulary (e.g., small, big, short, tall, empty, full, heavy, and light).	The CCSS and current NYS emphasize describing the attribute. (This object has length, for example.) The new NYS examples shift that to make claims of quantifying that attribute. Is this an intentional shift? If so, this seems to overlap with K.MD.A.2 in that a claim about "small" requires some sort of comparison to something else. Clarification is needed.
K.MD.2. Directly compare two objects with a measurable attribute in common, to see which object has "more of"/"less of" the attribute, and describe the difference. For example, directly compare the heights of two children and describe one child as taller/shorter.	K.MD.A.2. Directly compare two objects with a measurable attribute in common to see which object has "more of"/"less of" the attribute and describe the difference.	NYS removed the CCSS example.
Classify objects and count the number of objects in each category.	B. Classify objects and count the number of objects in each category.	
K.MD.3. Classify objects into given categories; count the numbers of objects in each category and sort the categories by count. [Limit category counts to be less than or equal to 10.]	K.MD.B.3. Classify objects into given categories; count the objects in each category and order the categories by count. Limit category counts to be less than or equal to 10.	•
	C. Work with money	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
	K.MD.C.4. Explore coins and begin identifying	NYS increased emphasis on money. This
	pennies and dimes.	standard may present a measurement problem.
		What does it mean to <i>begin</i> identifying pennies
		and dimes? How would a teacher measure
		"begin" in this standard?

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Geometry		
Identify and describe shapes (squares, circles,	A. Identify and describe shapes (squares,	
triangles, rectangles, hexagons, cubes, cones,	circles, triangles, rectangles, hexagons, cubes,	
cylinders, and spheres).	cones, cylinders, and spheres).	
K.G.1. Describe objects in the environment using	K.G.A.1. Describe objects in the environment	
names of shapes, and describe the relative	using names of shapes, and describe the relative	
positions of these objects using terms such as	positions of these objects using terms such as	
above , below , beside , in front of , behind , and	above, below, beside, in front of, behind, and	
next to .	next to.	
K.G.2. Correctly name shapes regardless of their	K.G.A.2. Name shapes regardless of their	NYS assumed that correctness was implied in the
orientations or overall size.	orientations or overall size.	standard. However, the wording of the new NYS
		allows for any name for a shape. Is the
		expectation for students to provide their own
		names for shapes or to provide established
		names for shapes?
K.G.3. Identify shapes as two-dimensional (lying	K.G.A.3. Differentiate between two-dimensional	NYS slightly changed the wording in this
in a plane, "flat") or three- dimensional ("solid").	(lying in a plane, "flat") and three-dimensional	standard. This change is insignificant in terms of
	("solid") shapes.	meaning and rigor.
Analyze, compare, create, and compose shapes.	B. Analyze, compare, and sort objects.	The header for this cluster is changed, creating a
		coherence issue. However, the rationale for this
		change needs clarification as none of the
		standards below address sorting objects.
K.G.4. Analyze and compare two- and three-	K.G.B.4. Analyze and compare two- and three-	
dimensional shapes, in different sizes and	dimensional shapes, in different sizes and	
	orientations, using informal language to describe	
their similarities, differences, parts (e.g., number	their similarities, differences, parts (e.g., number	
of sides and vertices/"corners") and other	of sides and vertices/"corners") and other	
attributes (e.g., having sides of equal length).	attributes (e.g., having sides of equal length).	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
K.G.5. Model shapes in the world by building	K.G.B.5. Model objects in their environment by	The wording in this NYS is awkward. Should
shapes from components (e.g., sticks and clay	using and/or drawing shapes (e.g., using unit	"their" be "the?" It is not clear why "building
balls) and drawing shapes.	blocks to build a simple representation of the	shapes" was removed, as it clarified what the
	classroom).	"model" was to be.
		By putting "using" and "drawing" together, NYS put the emphasis on 3-D models. It is not clear how students in Gr K would know how to "draw" environmental shapes that are 3-D. They changed from "sticks and clay balls," which might be used to build either 2- or 3-D shapes, to "unit blocks," which essentially removed the possibility of 2-D shapes.
K.G.6. Compose simple shapes to form larger	K.G.B.6. Compose larger shapes from simple	NYS slightly changed the wording of this
shapes. For example, "Can you join these two	shapes (e.g., join two triangles to make a	standard.
triangles with full sides touching to make a rectangle?"	rectangle).	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
GRADE 1		
Operations and Algebraic Thinking		
Represent and solve problems involving	A. Represent and solve problems involving	
addition and subtraction.	addition and subtraction.	
1.OA.1. Use addition and subtraction within 20	1.OA.A.1. Use addition and subtraction within 20	NYS added a link to the Draft K-5 progressions
to solve word problems involving situations of	to solve one step word problems involving	and an instructional note to the teacher. It is not
adding to, taking from, putting together, taking	situations of adding to, taking from, putting	clear why the example was changed from a list
apart, and comparing, with unknowns in all	together, taking apart, and/or comparing, with	of three strategies to, what appears to be, two:
positions, e.g., by using objects, drawings, and	unknowns in all positions (e.g., by using objects	"objects or drawings" and "equations."
equations with a symbol for the unknown	or drawings, and equations with a symbol for the	
number to represent the problem*. [*See	unknown number to represent the problem).	
Glossary, Table 1.]	(See Table 2 Addition and Subtraction Situations,	
	pg. 9 of	
	https://commoncoretools.files.wordpress.com/2	
	011/05/ccss_progression_cc_oa_k5_2011_05_30	
	2.pdf)	
	Note: Instructionally, students should be taught	
	to use objects, drawings, and equations with a	
	symbol for the unknown number to represent	
	the problem; however, when solving any	
	problem, students can use objects or drawings,	
	and equations.	
1.OA.2. Solve word problems that call for	1.OA.A.2. Solve word problems that call for	•
addition of three whole numbers whose sum is	addition of three whole numbers whose sum is	
less than or equal to 20, e.g., by using objects,	less than or equal to 20. e.g. by using objects,	
drawings, and equations with a symbol for the	drawings, and equations with a symbol for the	
unknown number to represent the problem.	unknown number to represent the problem.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Understand and apply properties of operations	B. Understand and apply properties of	
and the relationship between addition and	operations and the relationship between	
subtraction.	addition and subtraction.	
1.OA.3. Apply properties of operations as	1.OA.B.3. Apply properties of operations as	NYS put the CCSS footnote in parentheses in the
strategies to add and subtract. Examples: If 8 + 3	strategies to add and subtract. Examples: If 8 + 3	standard.
= 11 is known, then 3 + 8 = 11 is also known.	= 11 is known, then 3 + 8 = 11 is also known.	
(Commutative property of addition.) To add 2 +	(Commutative property of addition.) To add 2 +	
6 + 4, the second two numbers can be added to	6 + 4, the second two numbers can be added to	
make a ten, so 2 + 6 + 4 = 2 + 10 = 12.	make a ten, so 2 + 6 + 4 = 2 + 10 = 12.	
(Associative property of addition.) [Students	(Associative property of addition.) (Students	
need not use formal terms for these properties.]	need not use formal terms for these properties.)	
1.OA.4. Understand subtraction as an unknown-	1.OA.B.4. Understand subtraction as an	NYS added the requirement to add/subtract
addend problem. For example, subtract 10 – 8	unknown-addend problem (e.g., subtract 10 – 8	within 20 to this understanding of subtraction
by finding the number that makes 10 when	by finding the number that makes 10 when	standard. This requirement is not well connected
added to 8.	added to 8). Add and subtract within 20.	to 1.OA.B.4. This may be a typo, as it is also the
		cluster header that immediately follows.
Add and subtract within 20.	C. Add and subtract within 20.	
1.OA.5. Relate counting to addition and	1.OA.C.5. Relate counting to addition and	
subtraction (e.g., by counting on 2 to add 2).	subtraction (e.g., by counting on 2 to add 2).	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
1.OA.6. Add and subtract within 20,	1.OA.C.6a. Add and subtract within 20. Use	NYS separated the requirements in this CCSS
demonstrating fluency for addition and	strategies such as counting on; making ten (e.g.,	into two parts.
subtraction within 10. Use strategies such as	8 + 6 = 8 + 2 + 4 = 10 + 4 = 14); decomposing a	
counting on; making ten (e.g., 8 + 6 = 8 + 2 + 4 =	number leading to a ten (e.g., 13 – 4 = 13 – 3 – 1	
10 + 4 = 14); decomposing a number leading to a	= 10 – 1 = 9); using the relationship between	
ten (e.g., $13 - 4 = 13 - 3 - 1 = 10 - 1 = 9$); using	addition and subtraction (e.g., knowing that 8 +	
the relationship between addition and	4 = 12, one knows 12 – 8 = 4); and creating	
subtraction (e.g., knowing that 8 + 4 = 12, one	equivalent but easier or known sums (e.g.,	
knows 12 – 8 = 4); and creating equivalent but	adding 6 + 7 by creating the known equivalent 6	
easier or known sums (e.g., adding 6 + 7 by	+ 6 + 1 = 12 + 1 = 13).	
creating the known equivalent 6 + 6 + 1 = 12 + 1		
= 13).		
	1.OA.C.6b. Fluently add and subtract within 10.	NYS added the definition of fluency (presumably
	Note: Fluency involves a mixture of just knowing	for the teacher) to this standard. In this case, it is
	some answers, knowing some answers from	not clear how this particular fluency
	patterns, and knowing some answers from the	requirement would be relevant, since in this
	use of strategies.	case, "just knowing" is the goal. Using patterns
		and strategies would not be useful or expected.
Work with addition and subtraction equations.	D. Work with addition and subtraction	
	equations.	
1.OA.7. Understand the meaning of the equal	1.OA.D.7. Understand the meaning of the equal	
sign, and determine if equations involving	sign, and determine if equations involving	
addition and subtraction are true or false. For	addition and subtraction are true or false (e.g.,	
<i>example</i> , which of the following equations are	which of the following equations are true and	
true and which are false? 6 = 6, 7 = 8 – 1, 5 + 2 =	which are false? 6 = 6, 7 = 8 – 1, 5 + 2 = 2 + 5, 4 +	
2 + 5, 4 + 1 = 5 + 2.	1 = 5 + 2).	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
1.OA.8. Determine the unknown whole number	1.OA.D.8. Determine the unknown whole	NYS removed the reference to three whole
in an addition or subtraction equation relating	number in an addition or subtraction equation	numbers in the equation but added "the
three whole numbers. For example, determine	with the unknown in all positions, (e.g.,	unknown in all positions." Clarification may be
the unknown number that makes the equation	determine the unknown number that makes the	needed to ensure consistent understanding of
true in each of the equations $8 + ? = 11, 5 = \Box -$	equation true in each of the equations 8 + ? =	this requirement. Does NYS expect that
$3, 6 + 6 = \Box.$	11, 3 = 5 , 6 + 6 = ■).	equations relating more than three whole numbers are allowed?
		It is not clear why NYS changed all three
		equations to be in the same order: $a + b = c$,
		rather than having one in the $c = a + b$ order, as
		is the case in the CCSS. This is especially
		interesting given the move to placing "the
		unknown in all positions" in the NYS.
Numbers and Operations in Base 10		
Extend the counting sequence.	A. Extend the counting sequence.	
1.NBT 1. Count to 120, starting at any number	1.NBT.A.1. Count to 120, starting at any number	•
less than 120. In this range, read and write	less than 120. In this range, read and write	
numerals and represent a number of objects	numerals and represent a number of objects	
with a written numeral.	with a written numeral.	
Understand place value.	B. Understand place value.	
1.NBT 2. Understand that the two digits of a two-	1.NBT.B.2. Understand that the two digits of a	In removing the colon and separating the sub
digit number represent amounts of tens and	two-digit number represent amounts of tens and	parts of this CCSS, the purpose of the parts,
ones. Understand the following as special cases:	ones.	special cases of the standard, was lost. More
a. 10 can be thought of as a bundle of ten ones		revision is needed to clearly identify a
— called a "ten."		performance expectation in those parts.
b. The numbers from 11 to 19 are composed of a	1.NBT.B.2a. 10 can be thought of as a bundle of	Measurability: This standard has no performance
ten and one, two, three, four, five, six, seven,	ten ones, called a "ten".	requirement but is rather a definition or
eight, or nine ones.		statement of fact.

CCSS/Current NYS	2018-19 NYS	Notes and Comments
c. The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90	1.NBT.B.2b. The numbers from 11 to 19 are	Measurability: This standard has no performance
refer to one, two, three, four, five, six, seven,	composed of a ten and some ones.	requirement but is rather a definition or
eight, or nine tens (and 0 ones).		statement of fact.
	1.NBT.B.2c. The numbers 10, 20, 30, 40, 50, 60,	Measurability: This standard has no performance
	70, 80, 90 refer to one, two, three, four, five, six,	requirement but is rather a definition or
	seven, eight or nine tens (and 0 ones).	statement of fact.
1.NBT.3. Compare two two-digit numbers based	1.NBT.B.3. Compare two two-digit numbers	
on meanings of the tens and ones digits,	based on meanings of the tens and ones digits,	
recording the results of comparisons with the	recording the results of comparisons with the	
symbols >, =, and <.	symbols >, =, and <.	
Use place value understanding and properties	C. Use place value understanding and	
of operations to add and subtract.	properties of operations to add and subtract	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
1.NBT.4. Add within 100, including adding a two-	1.NBT.C.4. Add within 100 using concrete	All parts of the CCSS were separated into sub
digit number and a one-digit number, and	models or drawings and strategies based on	parts. This rearrangement did not change the
adding a two-digit number and a multiple of 10,	place value, properties of operations, and/or the	meaning or rigor of the CCSS counterpart.
using concrete models or drawings and	relationship between addition and subtraction.	
strategies based on place value, properties of	Relate the strategy to a written method and	NYS added a note to the teacher attempting to
operations, and/or the relationship between	explain the reasoning used. A written method is	clarify the stem for this standard. The last part of
addition and subtraction; relate the strategy to a	any way of representing a strategy using pictures	this note, if taken at face value, may instruct a
written method and explain the reasoning used.	or numbers.	teacher to never hold students accountable for a
Understand that in adding two-digit numbers,		specific strategy. This may need clarification.
one adds tens and tens, ones and ones; and	Note: Instructionally, students should be taught	
sometimes it is necessary to compose a ten.	to use strategies based on place value,	
	properties of operations, and the relationship	
	between addition and subtraction; however,	
	when solving any problem, students can choose	
	any strategy.	
	1.NBT.C.4a. Add a two-digit number and a one-	
	digit number.	
	1.NBT.C.4b. Add a two-digit number and a	
	multiple of 10.	
	1.NBT.C.4c. Understand that in adding two-digit	
	numbers, one adds tens and tens, ones and	
	ones, and sometimes it is necessary to compose	
	a ten.	
1.NBT.5. Given a two-digit number, mentally find	1.NBT.C.5. Given a two-digit number, mentally	•
10 more or 10 less than the number, without	find 10 more or 10 less than the number,	
having to count; explain the reasoning used.	without having to count; explain the reasoning	
	used.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
1.NBT.6. Subtract multiples of 10 in the range 10-	1.NBT.C.6. Subtract multiples of 10 from	NYS removed the limitation of "positive or zero
90 from multiples of 10 in the range 10-90	multiples of 10 in the range 10-90. Relate the	differences" and moved the suggested strategies
(positive or zero differences), using concrete	strategy used to a written representation and	to a note for teachers. Returning the missing
models or drawings and strategies based on	explain the reasoning. A written method is any	limitation might need to be considered, since it
place value, properties of operations, and/or the	way of representing a strategy using pictures or	is not necessarily "implied" as stated in the
relationship between addition and subtraction;	numbers.	clarification notes. The added definition for
relate the strategy to a written method and	Note: Students may use concrete models,	"written method" should be in a glossary rather
explain the reasoning used.	drawings, strategies based on place value,	than in the standard.
	properties of operations, and/or the relationship	
	between addition and subtraction.	
Measurement and Data		
Measure lengths indirectly and by iterating	A. Measure lengths indirectly and by iterating	
length units.	length units.	
1.MD.1. Order three objects by length; compare	1.MD.A.1. Order three objects by length;	
the lengths of two objects indirectly by using a	compare the lengths of two objects indirectly by	
third object.	using a third object.	
1.MD.2. Express the length of an object as a	1.MD.A2. Express the length of an object as a	
whole number of length units, by laying multiple	whole number using "length units", (e.g., cubes,	
copies of a shorter object (the length unit) end	paper clips). Measure end to end with no gaps or	
to end; understand that the length	overlaps.	
measurement of an object is the number of		
same-size length units that span it with no gaps		
or overlaps. Limit to contexts where the object		
being measured is spanned by a whole number		
of length units with no gaps or overlaps.		

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Tell and write time.	B. Tell and write time and money.	The wording of this new header needs clarification: "Tell and writemoney?"
1.MD.3. Tell and write time in hours and half- hours using analog and digital clocks.	1.MD.B.3a. Tell and write time in hours and half- hours using analog and digital clocks. Use the terms o'clock and half past.	NYS added vocabulary requirements related to telling time. It is not clear why these particular time vocabulary words are called out, especially "half past," which is not commonly used in today's language. Also in 2.MD.C.7 the additional phrase "but not included to" is added to a similar addition. This wording makes it appear that only those terms are required. Will students also be required to use "thirty?" For example saying 9:30?
	1.MD.B.3b. Recognize and identify coins (penny, nickel, dime, and quarter) and their value and use the ¢ (cent) symbol appropriately.	NYS added a similar expectation in the original adaptation of the CCSS, though it was part of an existing standard. In this draft money is split into two additional substandards.
	1.MD.B.3c. Explore dimes and pennies as they relate to place value concepts.	NYS added requirements related to money. This standard uses the verb, "explore," as an indication that this is a concept that will be built upon in later grades.
Represent and interpret data.	C. Represent and interpret data.	
1.MD.4. Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another.	1.MD.C.4.Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another.	•

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Geometry		
Reason with shapes and their attributes.		
1.G.1. Distinguish between defining attributes	1.G.A.1. Distinguish between defining attributes	NYS added "or" to this requirement.
(e.g., triangles are closed and three-sided) versus	(e.g., triangles are closed and three-sided) versus	
non-defining attributes (e.g., color, orientation,	non-defining attributes (e.g., color, orientation,	
overall size); build and draw shapes to possess	overall size) for a wide variety of shapes; build	
defining attributes.	and/or draw shapes to possess defining	
	attributes.	
1.G.2. Compose two-dimensional shapes	1.G.A.2. Compose two-dimensional shapes	•
(rectangles, squares, trapezoids, triangles, half-	(rectangles, squares, trapezoids, triangles, half-	
circles, and quarter-circles) or three-dimensional	circles, and quarter-circles) or three-dimensional	
shapes (cubes, right rectangular prisms, right	shapes (cubes, right rectangular prisms, right	
circular cones, and right circular cylinders) to	circular cones, and right circular cylinders) to	
create a composite shape, and compose new	create a composite shape, and compose new	
shapes from the composite shape. [Students do	shapes from the composite shape. (Students do	
not need to learn formal names such as "right	not need to learn formal names such as "right	
rectangular prism."]	rectangular prism.")	
1.G.3. Partition circles and rectangles into two	1.G.A.3. Partition circles and rectangles into two	•
and four equal shares, describe the shares using	and four equal shares, describe the shares using	
the words <i>halves , fourths ,</i> and <i>quarters ,</i> and	the words halves, fourths, and quarters, and use	
use the phrases half of , fourth of , and quarter	the phrases half of, fourth of, and quarter of.	
of . Describe the whole as two of, or four of the	Describe the whole as two of, or four of the	
shares. Understand for these examples that	shares. Understand for these examples that	
decomposing into more equal shares creates	decomposing into more equal shares creates	
smaller shares.	smaller shares.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
GRADE 2		
Operations and Algebraic Thinking		
Represent and solve problems involving	A. Represent and solve problems involving	
addition and subtraction.	addition and subtraction.	
2.OA.1. Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem*. [*See Glossary, Table 1.]	2.OA.A.1a. Use addition and subtraction within 100 to solve one-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem). Explanations may be supported by drawings or objects. (See Table 2 Addition and Subtraction Situations, pg. 9 of https://commoncoretools.files.wordpress.com/2 011/05/ccss_progression_cc_oa_k5_2011_05_30 2.pdf)	NYS split this CCSS into to sub parts, making 1- step problem solving the primary requirement at this grade level.
	2.OA.A.1b. Use addition and subtraction within 100 to develop an understanding of solving two- step problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.	This NYS reduced the rigor for 2-step problem solving by making the requirement to "develop an understanding" of them, rather than to actually solve them. This may present a measurement issue: Is there a measurement difference between "develop an understanding" and "understand?" This is not addressed in the Glossary of Verbs.
Add and subtract within 20.	B. Add and Subtract within 20.	•

CCSS/Current NYS	2018-19 NYS	Notes and Comments
2.OA.2. Fluently add and subtract within 20	2.OA.B.2a. Fluently add and subtract within 20	NYS separated the two concepts in the
using mental strategies. By end of Grade 2, know	using mental strategies. Strategies could include	compound CCSS version into two sub parts. They
from memory all sums of two one-digit	counting on; making ten (e.g., 8 + 6 = 8 + 2 + 4 =	also added an explanation of the mental
numbers. [See standard 1.OA.6 for a list of	10 + 4 = 14); decomposing a number leading to a	strategies expected and a definitive note to the
mental strategies.]	ten (e.g., 13 – 4 = 13 – 3 – 1 = 10 – 1 = 9); using	teacher regarding fluency. In this case the
	the relationship between addition and	fluency note appears to contradict the standard,
	subtraction (e.g., knowing that 8 + 4 = 12, one	itself, since "the use of strategies" is the only
	knows 12 – 8 = 4); and creating equivalent but	fluency method called for.
	easier or known sums (e.g., adding 6 + 7 by	
	creating the known equivalent 6 + 6 + 1 = 12 + 1	
	= 13).	
	Note: Fluency involves a mixture of just knowing	
	some answers, knowing some answers from	
	patterns, and knowing some answers from the	
	use of strategies.	
	2.OA.B.2b. By end of the year, know from	
	memory all sums within 20 of two one-digit	
	numbers.	
Work with equal groups of objects to gain	C. Work with equal groups of objects to gainin	
foundations for multiplication.	foundations for multiplication	
2.OA.3. Determine whether a group of objects	2.OA.C.3a. Determine whether a group of	NYS separated the two concepts in the
(up to 20) has an odd or even number of	objects (up to 20) has an odd or even number of	compound CCSS version into two sub parts.
members, e.g., by pairing objects or counting	members (e.g., by pairing objects or counting	
them by 2s; write an equation to express an	them by 2's).	
even number as a sum of two equal addends.	2.OA.C.3b.Write an equation to express an even	
	number as a sum of two equal addends.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
2.OA.4. Use addition to find the total number of	2.OA.C.4. Use addition to find the total number	
objects arranged in rectangular arrays with up to	of objects arranged in rectangular arrays with up	
5 rows and up to 5 columns; write an equation	to 5 rows and up to 5 columns; write an	
to express the total as a sum of equal addends.	equation to express the total as a sum of equal addends.	
Numbers and Operations in Base Ten		
Understand place value.	A. Understand place value	
2.NBT.1. Understand that the three digits of a	2.NBT.A.1. Understand that the three digits of a	In removing the colon and separating the sub
three-digit number represent amounts of	three-digit number represent amounts of	parts of this CCSS, the purpose of the parts,
hundreds, tens, and ones; e.g., 706 equals 7	hundreds, tens, and ones: e.g. 706 equals 7	special cases of the standard, was lost. More
hundreds, 0 tens, and 6 ones. Understand the	hundreds, 0 tens, and 6 ones.	revision is needed to clearly identify a
following as special cases:		performance expectation.
a. 100 can be thought of as a bundle of ten tens	2.NBT.A.1a. 100 can be thought of as a bundle of	Measurability: This standard has no performance
 called a "hundred." 	ten tens, called a "hundred".	requirement but is rather a definition or
b. The numbers 100, 200, 300, 400, 500, 600,		statement of fact.
700, 800, 900 refer to one, two, three, four, five,	2.NBT.A.1b. Then numbers 100, 200, 300, 400,	Measurability: This standard has no performance
six, seven, eight, or nine hundreds (and 0 tens	500, 600, 700, 800, 900 refer to one, two, three,	requirement but is rather a definition or
and 0 ones).	four, five, six, seven, eight, or nine hundreds	statement of fact. Typo: "the" is changed to
	(and 0 tens and 0 ones).	"then" in the NYS version.
2.NBT.2. Count within 1000; skip-count by 5s,	2.NBT.A.2. Count within 1000; skip-count by 5s,	NYS added a limitation that is not expressly
10s, and 100s.	10s, and 100s.	present in the CCSS.
	Note: Begin sequence with a multiple of 5, 10, or	
	100.	
2.NBT.3. Read and write numbers to 1000 using	2.NBT.A.3. Read and write numbers to 1000	NYS added an explanatory note for the teacher.
base-ten numerals, number names, and	using base-ten numerals, number names, and	This might be more appropriate in parentheses
expanded form.	expanded form. Expanded form in Grade 2	or brackets.
	should take the	
	form of : 237=200+30+7.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
2.NBT.4. Compare two three-digit numbers	2.NBT.A.4. Compare two three-digit numbers	
based on meanings of the hundreds, tens, and	based on meanings of the hundreds, tens, and	
ones digits, using >, =, and < symbols to record	ones digits, using >, =, and < symbols to record	
the results of comparisons.	the results of comparisons.	
Use place value understanding and properties	B. Use place value understanding and	
of operations to add and subtract.	properties of operations to add and subtract.	
2.NBT.5. Fluently add and subtract within 100	2.NBT.B.5a. Fluently add and subtract within 100	NYS added a requirement for students to
using strategies based on place value, properties	using strategies based on place value, properties	illustrate or explain the strategy. Presumably this
of operations, and/or the relationship between	of operations, and/or the relationship between	addition was intended to cover 2.NBT.9.
addition and subtraction.	addition and subtraction; illustrate or explain the	However, this requirement does not meet that
	strategy and reasoning used.	of the CCSS: "Explain WHY strategies work."
	Note: Fluency involves a mixture of just knowing	The added note to the teacher related to fluency
	some answers, knowing some answers from	does not make sense here, since this standard
	patterns, and knowing some answers from the	addresses only strategies and not a mixture of
	use of strategies.	other ways of "knowing."
	2.NBT.B.5b. Understand that in adding or	NYS added this requirement, expounding on
	subtracting two-digit numbers, one adds or	NBT.B.5a.
	subtracts tens and tens, ones and ones, and	
	sometimes it is necessary to compose or	
	decompose tens.	
2.NBT.6. Add up to four two-digit numbers using	2.NBT.B.6. Add up to four two-digit numbers	•
strategies based on place value and properties	using strategies based on place value and	
of operations.	properties of operations.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
2.NBT.7. Add and subtract within 1000, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method. Understand that in adding or subtracting three- digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds.	2.NBT.B.7a. Add and subtract within 1000, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method. A written method is any way of representing a strategy using pictures or numbers. <u>Note</u> : Fluency not expected until grade three.	NYS separated the concepts in the compound CCSS version into two sub parts. In this one they added a note for the teacher regarding fluency requirements at this grade level and an explanation of the term, "written method." Since it is not part of the performance objective, this definition would be more appropriate in a parenthetical, a note, or the glossary.
	2.NBT.B.7b. Understand that in adding or subtracting up to three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones, and sometimes it is necessary to compose or decompose tens or hundreds.	•
2.NBT.8. Mentally add 10 or 100 to a given number 100–900, and mentally subtract 10 or 100 from a given number 100–900.	2.NBT.B.8. Mentally add 10 or 100 to a given number 100-900, and mentally subtract 10 or 100 from a given number 100-900.	
2.NBT.9. Explain why addition and subtraction strategies work, using place value and the properties of operations. [Explanations may be supported by drawings or objects.]	•	NYS removed this CCSS, thinking the requirement can be met through their addition to 2.NBT.B.5a. However, this addition does not meet the requirement of explaining WHY the strategies work. This removal created a gap in the alignment.
Measurement and Data		
Measure and estimate lengths in standard units.	A. Measure and estimate lengths in standard units.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
2.MD.1. Measure the length of an object by	2.MD.A.1. Measure the length of an object to	The wording of this NYS is awkward in that there
selecting and using appropriate tools such as	the nearest whole by selecting and using	appears to be a word missing. Should this be "to
rulers, yardsticks, meter sticks, and measuring	appropriate tools such as rulers, yardsticks,	the nearest whole UNIT?"
tapes.	meter sticks, and measuring tapes.	
2.MD.2. Measure the length of an object twice, using length units of different lengths for the two measurements; describe how the two measurements relate to the size of the unit chosen.	2.MD.A.2. Measure the length of an object twice, using different "length units" for the two measurements; describe how the two measurements relate to the size of the unit chosen.	The only apparent change here (other than a slight change in word order) is the quotation marks. This change makes it appear that "length units" is a concept? In the CCSS version it reads more as units of different lengths (e.g. inches, feet, centimeters,). It is not clear how this change is a clarification and it may actually cause confusion.
2.MD.3. Estimate lengths using units of inches,	2.MD.A.3. Estimate lengths using units of inches,	
feet, centimeters, and meters.	feet, centimeters, and meters.	
2.MD.4. Measure to determine how much	2.MD.A.4. Measure to determine how much	Again, "length unit" is presented in NYS as a
longer one object is than another, expressing the	longer one object is than another, expressing the	concept. In the CCSS it is about units of standard
length difference in terms of a standard length	length difference in terms of a standard "length	length. This is more likely to cause confusion
unit.	unit".	than clarification.
Relate addition and subtraction to length.	B. Relate addition and subtraction to length.	•
2.MD.5. Use addition and subtraction within 100	2.MD.B5. Use addition and subtraction within	NYS removed the example of a drawing that
to solve word problems involving lengths that	100 to solve word problems involving lengths	might be used.
are given in the same units, e.g., by using	that are given in the same units (e.g., by using	
drawings (such as drawings of rulers) and	drawings and equations with a symbol for the	
equations with a symbol for the unknown	unknown number to represent the problem).	
number to represent the problem.		

CCSS/Current NYS	2018-19 NYS	Notes and Comments
2.MD.6. Represent whole numbers as lengths	2.MD.B.6. Represent whole numbers as lengths	
from 0 on a number line diagram with equally	from 0 on a number line diagram with equally	
spaced points corresponding to the numbers 0,	spaced points corresponding to the numbers 0,	
1, 2,, and represent whole-number sums and	1, 2, , and represent whole-number sums and	
differences within 100 on a number line diagram.	differences within 100 on a number line diagram.	
Work with time and money.	C. Work with time and money.	
2.MD.7. Tell and write time from analog and	2.MD.C.7. Tell and write time from analog and	NYS added vocabulary requirements related to
digital clocks to the nearest five minutes, using	digital clocks to the nearest five minutes, using	telling time. Note: In this NYS "quarter past" and
a.m. and p.m.	a.m. and p.m. Develop an understanding of	"quarter to" are called "common terms." These
	common terms, such as, but not limited to,	are more archaic, and possibly regional, than
	quarter past, and quarter to.	common.
2.MD.8. Solve word problems involving dollar	2.MD.C.8a. Count a mixed collection of coins	NYS split this requirement into two steps: First,
bills, quarters, dimes, nickels, and pennies, using	that equals up to a dollar.	to simply count coins and then, to solve
\$ and ¢ symbols appropriately. <i>Example: If you</i>		problems involving coins.
have 2 dimes and 3 pennies, how many cents do	2.MD.C.8b. Solve real world and mathematical	NYS added a limitation in this case, which
you have?	problems within 1 dollar involving, quarters,	requires that problems use values less than or
	dimes, nickels, and pennies, using ¢ (cents)	equal to \$1 and does not require us of the dollar
	symbols appropriately, (e.g., If you have 2 dimes	sign. This is a shift in focus from that of the CCSS.
	and 3 pennies, how many cents do you have?).	
Represent and interpret data.	D. Represent and interpret data.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
2.MD.9. Generate measurement data by	2.MD.D.9. Generate and present measurement	The order and word changes in this NYS make it
measuring lengths of several objects to the	data in a line plot where the horizontal scale is	awkward. First, the second part of the
nearest whole unit, or by making repeated	marked off in whole-number units, by measuring	compounded verb does not make sense. How
measurements of the same object. Show the	lengths of several objects to the nearest whole	would one "generate data in a line plot?"
measurements by making a line plot, where the	unit, or by making repeated measurements of	Then, there may be a comma missing after
horizontal scale is marked off in whole-number	the same object.	"measurement data in a line plot." This makes
units.		the description of the horizontal scale an aside.
		Without the comma the "by measuring lengths
		" seems to have no connection to a verb.
2.MD.10. Draw a picture graph and a bar graph	2.MD.D.10. Draw a picture graph and a bar	NYS includes a glossary of verbs but not of other
(with single-unit scale) to represent a data set	graph (with single-unit scale) to represent a data	important mathematical concepts, such as "put-
with up to four categories. Solve simple put-	set with up to four categories. Solve simple put-	together, take-apart, and compare problems."
together, take-apart, and compare problems*	together, take-apart, and compare problems	This standard might call for examples, or an
using information presented in a bar graph.	using information presented in graphs.	outside reference, since that glossary is missing
[*See Glossary, Table 1.]		in NYS.
Geometry		
Reason with shapes and their attributes.	A. Reason with shapes and their attributes.	
	2.G.A.1. Classify two-dimensional figures as	This NYS used vocabulary that goes beyond the
	polygons or non-polygons.	grade level of the CCSS (the term, polygon, is not
		used until Gr 3). At this grade, students are
		required to recognize, draw, and identify shapes
		based on specified attributes. This includes
		several types of polygons but is limited to those
		with 3, 4, 5, or 6 sides, and also includes cubes.
		The NYS does not limit the number of sides in a
		polygon in this level.

CCSS/Current NYS	2018-19 NYS	Notes and Comments
2.G.1. Recognize and draw shapes having	3.G.A.1. Classify polygons based on the number	This CCSS is addressed one year later in NYS,
specified attributes, such as a given number of	of sides and vertices. Recognize triangles,	creating a change in focus for this grade level.
angles or a given number of equal faces. Identify	quadrilaterals, pentagons, and hexagons as	3.G.A.1 includes a more general requirement to
triangles, quadrilaterals, pentagons, hexagons,	examples of polygons, and draw examples of	classify polygons based only on the number of
and cubes. [Sizes are compared directly or	polygons that do not belong to any of these	sides and vertices ("angles" in the CCSS example
visually, not compared by measuring.]	subcategories.	was replaced with "vertices" in the NYS).
		Drawing of figures is only required for figures
		that do not belong to any of the subcategories in
		NYS, in this case, that would mean drawing, for
		example polygons with more than 6 sides. This
		CCSS also requires recognition of cubes, which is
		missing from the NYS at this level.
		While the explanation for this change states that
		the CCSS version is not possible in Gr 3 since it
		required students to understand both angles and
		parallelism, it should be pointed out that
		students have recognized squares and rectangles
		since Gr K.
2.G.2. Partition a rectangle into rows and	2.G.A.2. Partition a rectangle into rows and	•
columns of same-size squares and count to find	columns of same-size squares and count to find	
the total number of them.	the total number of them.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
2.G.3. Partition circles and rectangles into two,	2.G.A.3. Partition circles and rectangles into two,	
three, or four equal shares, describe the shares	three, or four equal shares, describe the shares	
using the words halves , thirds , half of , a third	using the words halves, thirds, half of, a third of,	
of , etc., and describe the whole as two halves,	etc., and describe the whole as two halves, three	
three thirds, four fourths. Recognize that equal	thirds, four fourths. Recognize that equal shares	
shares of identical wholes need not have the	of identical wholes need not have the same	
same shape.	shape.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
GRADE 3		
Operations and Algebraic Thinking		
Represent and solve problems involving	A. Represent and solve problems involving	
multiplication and division.	multiplication and division.	
3.OA.1. Interpret products of whole numbers,	3.OA.A.1. Interpret products of whole numbers,	
e.g., interpret 5 x 7 as the total number of	e.g., interpret 5 × 7 as the total number of	
objects in 5 groups of 7 objects each. For	objects in 5 groups of 7 objects each. For	
example, describe a context in which a total	example, describe a context in which a total	
number of objects can be expressed as 5×7 .	number of objects can be expressed as 5 × 7.	
3.OA.2. Interpret whole-number quotients of	3.OA.A.2. Interpret whole-number quotients of	
whole numbers, e.g., interpret 56 ÷ 8 as the	whole numbers, e.g., interpret 56 ÷ 8 as the	
number of objects in each share when 56	number of objects in each share when 56	
objects are partitioned equally into 8 shares, or	objects are partitioned equally into 8 shares, or	
as a number of shares when 56 objects are	as a number of shares when 56 objects are	
partitioned into equal shares of 8 objects each.	partitioned into equal shares of 8 objects each.	
For example, describe a context in which a	For example, describe a context in which a	
number of shares or a number of groups can be	number of shares or a number of groups can be	
expressed as 56 ÷ 8.	expressed as 56 ÷ 8.	
3.OA.3. Use multiplication and division within	3.OA.A.3. Use multiplication and division within	The NYS reference to "glossary table 2" needs
100 to solve word problems in situations	100 to solve word problems in situations	clarification. There is no table 2 in the "glossary
involving equal groups, arrays, and	involving equal groups, arrays, and	of verbs," the only glossary in these standards.
measurement quantities, e.g., by using drawings	measurement quantities, e.g., by using drawings	
and equations with a symbol for the unknown	and equations with a symbol for the unknown	
number to represent the problem*. [See	number to represent the problem. (See glossary	
Glossary, Table 2.]	table 2)	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
3.OA.4. Determine the unknown whole number	3.OA.A.4. Determine the unknown whole	
in a multiplication or division equation relating	number in a multiplication or division equation	
three whole numbers. For example, determine	relating three whole numbers. For example,	
the unknown number that makes the equation	determine the unknown number that makes the	
true in each of the equations $8 \times ? = 48, 5 = 2$ ÷	equation true in each of the equations 8 × ? =	
3, 6 × 6 = ?.	48, 5 =÷ 3, 6 × 6 = ?.	
Understand properties of multiplication and the	B. Understand properties of multiplication and	
relationship between multiplication and	the relationship between multiplication and	
division.	division	
3.OA.5. Apply properties of operations as strategies to multiply and divide. <i>Examples: If 6</i> $\times 4 = 24$ is known, then $4 \times 6 = 24$ is also known. (Commutative property of multiplication.) 3×5 $\times 2$ can be found by $3 \times 5 = 15$, then $15 \times 2 = 30$, or by $5 \times 2 = 10$, then $3 \times 10 = 30$. (Associative property of multiplication.) Knowing that $8 \times 5 =$ 40 and $8 \times 2 = 16$, one can find 8×7 as $8 \times (5 +$ $2) = (8 \times 5) + (8 \times 2) = 40 + 16 = 56$. (Distributive property.) [Students need not use formal terms for these properties.]	 3.OA.B.5. Apply properties of operations as strategies to multiply and divide. <i>Examples:</i> If 6 × 4 = 24 is known, then 4 × 6 = 24 is also known. (Commutative property of multiplication.) 3 × 5 × 2 can be found by 3 × 5 = 15, then 15 × 2 = 30, or by 5 × 2 = 10, then 3 × 10 = 30. (Associative property of multiplication.) Knowing that 8 × 5 = 40 and 8 × 2 = 16, one can find 8 × 7 as 8 × (5 + 2) = (8 × 5) + (8 × 2) = 40 + 16 = 56. (Distributive property.) Note: Students need not use formal terms for these properties. A variety of representations can be used when applying the properties of operations, which may or may not include parentheses. 	NYS included the footnote in their note to the teachers and added more to the explanation about the "variety of representations" that may be used. It is not clear what that means, indicating that examples or a further expansion of the note may be required. In this case, it appears that the properties of operations are not to be limited to those in the parentheses (commutative, associative, distributive). Since the list of properties is finite, It should be made clear which are required at this level. [Clarity]
3.OA.6. Understand division as an unknown- factor problem. For example, find 32 ÷ 8 by finding the number that makes 32 when multiplied by 8.	3.OA.B.6. Understand division as an unknown- factor problem. For example, divide 32 ÷ 8 by finding the number that makes 32 when multiplied by 8.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Multiply and divide within 100.	C. Multiply and divide within 100.	
3.OA.7. Fluently multiply and divide within 100,	3.OA.C.7. Fluently solve single-digit	NYS changed "fluently multiply and divide" to
using strategies such as the relationship	multiplication and related divisions, using	"fluently solve multiplication and related
between multiplication and division (e.g.,	strategies such as the relationship between	divisions." Adding the word "solve" makes this
knowing that $8 \times 5 = 40$, one knows $40 \div 5 = 8$) or	multiplication and division (e.g., knowing that 8	read awkwardly, since "solve multiplication" and
properties of operations. By the end of Grade 3,	\times 5 = 40, one knows 40 \div 5 = 8) or properties of	"solve divisions" is nonstandard language. This
know from memory all products of two one-digit	operations. By the end of Grade 3, know from	may be an error. Perhaps the word "problem"
numbers.	memory all products of two one-digit numbers.	was lost? NYS also uses "single-digit" to replace
	Fluency expectation: Reaching fluency will take	"within 100." The definition of "solve single-digit
	much of the year for many students, so work on	multiplication" needs clarification. Does this
	developing understanding and fluency of	mean that 4 x 25 is addressed in this standard?
	multiplication and division should begin at or	The CCSS version may be interpreted to mean
	near the beginning of the year.	that any division of numbers less than 100 are
		fair game (e.g. 75 divided by 25, or 40 divided by
		12). NYS appears only to address products to 81
		(9 x 9) and only the discrete set of division
		problems that relate to those products. NYS also
		added a clarification of fluency for the teacher.

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Solve problems involving the four operations,	D. Solve problems involving the four	
and identify and explain patterns in arithmetic.	operations, and identify and explain patterns in	
	arithmetic.	
3.OA.8 Solve two-step word problems using the	3.OA.D.8. Solve two-step word problems posed	NYS separated the parts of this CCSS into sub
four operations. Represent these problems using	with whole numbers and having whole-number	parts but did not give them separate-standard
equations with a letter standing for the	answers using the four operations.	status.
unknown quantity. Assess the reasonableness of	a. Represent these problems using equations or	
answers using mental computation and	expressions with a letter standing for the	A note to the teacher regarding 2-step problems
estimation strategies including rounding. [This	unknown quantity.	was added. The meaning and intention is not
standard is limited to problems posed with	b. Assess the reasonableness of answers using	clear. More support may be needed to ensure
whole numbers and having whole-number	mental computation and estimation strategies	that teachers have a consistent understanding of
answers; students should know how to perform	including rounding.	the note.
operations in the conventional order when there	Note: Two-step problems need not be	
are no parentheses to specify a particular order	represented by a single expression or equation.	
(Order of Operations).]		
3.OA.9. Identify arithmetic patterns (including	3.OA.D.9. Identify arithmetic patterns (including	
patterns in the addition table or multiplication	patterns in the addition table or multiplication	
table), and explain them using properties of	table), and explain them using properties of	
operations. For example, observe that 4 times a	operations. For example, observe that 4 times a	
number is always even, and explain why 4 times	number is always even, and explain why 4 times	
a number can be decomposed into two equal	a number can be decomposed into two equal	
addends.	addends.	
Numbers and Operations in Base Ten		•
Use place value understanding and properties	A. Use place value understanding and	The CCSS footnote became part of the NYS
of operations to perform multi-digit arithmetic.	properties of operations to perform multi-digit	cluster title.
[A range of algorithms may be used.]	arithmetic. A range of algorithms may be used.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
3.NBT.1. Use place value understanding to round	3.NBT.A.1. Use place value understanding to	
whole numbers to the nearest 10 or 100.	round whole numbers to the nearest 10 or 100.	
3.NBT.2. Fluently add and subtract within 1000	3.NBT.A.2. Fluently add and subtract within 1000	NYS added the footnote for the cluster title to
using strategies and algorithms based on place	using strategies and algorithms based on place	this standard.
value, properties of operations, and/or the	value, properties of operations, and/or the	
relationship between addition and subtraction.	relationship between addition and subtraction.	
	(A range of algorithms may be used.)	
3.NBT.3. Multiply one-digit whole numbers by	3.NBT.A.3. Multiply one-digit whole numbers by	
multiples of 10 in the range 10–90 (e.g., 9 x 80, 5	multiples of 10 in the range 10-90 (e.g., $9 \times 80, 5$	
x 60) using strategies based on place value and	× 60) using strategies based on place value and	
properties of operations.	properties of operations.	
Number and Operations – Fractions		
[Grade 3 expectations in this domain are limited		
to fractions with denominators 2, 3, 4, 6, and 8.]		
Develop understanding of fractions as numbers.	A. Develop understanding of fractions as	
	numbers.	
3.NF.1. Understand a fraction 1/b as the	3.NF.A.1. Understand a fraction 1/b as the	NYS added the footnote for the cluster title to
quantity formed by 1 part when a whole is	quantity formed by 1 part when a whole is	this standard.
partitioned into <i>b</i> equal parts; understand a	partitioned into b equal parts; understand a	
fraction a/b as the quantity formed by a parts	fraction a/b as the quantity formed by a parts of	
of size 1/b .	size 1/b. (Grade 3 expectations in this domain	
	are limited to fractions with denominators 2, 3,	
	4, 6, and 8.)	
3.NF.2. Understand a fraction as a number on	3.NF.A.2. Understand a fraction as a number on	•
the number line; represent fractions on a	the number line; represent fractions on a	
number line diagram.	number line diagram.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
3.NF.2a Represent a fraction $1/b$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into <i>b</i> equal parts. Recognize that each part has size $1/b$ and that the endpoint of the part based at 0 locates the number $1/b$ on the number line.	3.NF.A.2a. Represent a fraction 1/b on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size 1/b and that the endpoint of the part starting at 0 locates the number 1/b on the number line. For example, [geometric figure added]	NYS changed "based" to "starting" and added a visual example.
3.NF.2b Represent a fraction a/b on a number line diagram by marking off a lengths $1/b$ from 0. Recognize that the resulting interval has size a/b and that its endpoint locates the number a/b on the number line.	3.NF.A.2b. Represent a fraction a/b on a number line diagram by marking off a lengths 1/b from 0. Recognize that the resulting interval has size a/b and that its endpoint locates the number a/b on the number line. For example, [geometric figure added]	NYS added a visual example.
3.NF.3. Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size.	3.NF.A.3. Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size.	
3.NF.3a Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.	3.NF.A.3a. Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line. (Grade 3 expectations in this domain are limited to fractions with denominators 2, 3, 4, 6, and 8.)	NYS included the CCSS footnote as part of the standard.

CCSS/Current NYS	2018-19 NYS	Notes and Comments
3.NF.3b Recognize and generate simple equivalent fractions, e.g., 1/2 = 2/4, 4/6 = 2/3). Explain why the fractions are equivalent, e.g., by using a visual fraction model.	3.NF.A.3b. Recognize and generate equivalent fractions (e.g., 1/2 = 2/4, 4/6 = 2/3). Explain why the fractions are equivalent, e.g., by using a visual fraction model.	NYS removed "simple" from the description.
3.NF.3c Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. <i>Examples: Express 3 in the form 3 =</i> $3/1$; recognize that $6/1 = 6$; locate $4/4$ and 1 at the same point of a number line diagram.	3.NF.A.3c. Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. <i>Examples: Express 3 in the form</i> 3 = 3/1; recognize that $6/3 = 2$; locate 4/4 and 1 at the same point of a number line diagram.	NYS changed the example.
3.NF.3d Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.	3.NF.A.3d. Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons rely on the two fractions referring to the same whole. Record the results of comparisons with the symbols > or <, and justify the conclusions, e.g., by using a visual fraction model.	The validity of comparisons was removed from the NYS. Perhaps it should read, "Recognize that VALID comparisons rely on"

36

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Measurement and Data		
Solve problems involving measurement and	A. Solve problems involving measurement and	
estimation of intervals of time, liquid volumes,	estimation of intervals of time, liquid volumes,	
and masses of objects.	and masses of objects.	
3.MD.1. Tell and write time to the nearest	3.MD.A.1. Tell and write time to the nearest	NYS restricts this requirement to 1-step
minute and measure time intervals in minutes.	minute and measure time intervals in minutes.	problems, reducing rigor when compared to the
Solve word problems involving addition and	Solve one-step word problems involving addition	CCSS.
subtraction of time intervals in minutes, e.g., by	and subtraction of time intervals in minutes	
representing the problem on a number line	(e.g., by representing the problem on a number	
diagram.	line diagram).	
	Note: This includes one-step problems that cross	
	into a new hour as well as those that cross the	
	a.m./p.m.	
3.MD.2. Measure and estimate liquid volumes	3.MD.A.2. Measure and estimate liquid volumes	NYS added the footnotes for this CCSS to the
and masses of objects using standard units of	and masses of objects using standard units of	standard in parentheses.
grams (g), kilograms (kg), and liters (I).* Add,	grams (g), kilograms (kg), and liters (I). (Excludes	
subtract, multiply, or divide to solve one-step	compound units such as cm^3 and finding the	
word problems involving masses or volumes that	geometric volume of a container.) Add, subtract,	
are given in the same units, e.g., by using	multiply, or divide to solve one-step word	
drawings (such as a beaker with a measurement	problems involving masses or volumes that are	
scale) to represent the problem**.	given in the same units, e.g., by using drawings	
[* Excludes compound units such as cm^3 and	(such as a beaker with a measurement scale) to	
finding the geometric volume of a container.	represent the problem. (Excludes multiplicative	
**Excludes multiplicative comparison problems	comparison problems (problems involving	
(problems involving notions of "times as much";	notions of "times as much.")	
see Glossary, Table 2.]		

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Represent and interpret data.	B. Represent and interpret data.	
3.MD.3. Draw a scaled picture graph and a	3.MD.B.3. Draw a scaled picture graph and a	
scaled bar graph to represent a data set with	scaled bar graph to represent a data set with	
several categories. Solve one- and two-step	several categories. Solve one- and two-step	
"how many more" and "how many less"	"how many more" and "how many less"	
problems using information presented in scaled	problems using information presented in scaled	
bar graphs. For example, draw a bar graph in	bar graphs. For example, draw a bar graph in	
which each square in the bar graph might	which each square in the bar graph might	
represent 5 pets.	represent 5 pets.	
3.MD.4. Generate measurement data by	3.MD.B.4. Generate measurement data by	
measuring lengths using rulers marked with	measuring lengths using rulers marked with	
halves and fourths of an inch. Show the data by	halves and fourths of an inch. Show the data by	
making a line plot, where the horizontal scale is	making a line plot, where the horizontal scale is	
marked off in appropriate units— whole	marked off in appropriate units—whole	
numbers, halves, or quarters.	numbers, halves, or quarters.	
Geometric measurement: understand concepts	C. Geometric measurement: understand	
of area and relate area to multiplication and to	concepts of area and relate area to	
addition.	multiplication and to addition.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
 3.MD.5 Recognize area as an attribute of plane figures and understand concepts of area measurement. a. A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area. b. A plane figure which can be covered without 	3.MD.C.5. Recognize area as an attribute of plane figures and understand concepts of area measurement.	In separating the sub parts of this CCSS, the purpose of the parts, special cases of the standard, was lost. More revision is needed to either clearly identify a performance expectation in those parts or to remove the grid lines, which make them appear to be separate standards.
gaps or overlaps by n unit squares is said to have an area of n square units.	3.MD.C.5a. A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area.	This explanation of a special case for the stem statement is listed as a separate standard in the NYS but does not describe student performance. A teacher who attempts to use this explanation of a special case for the stem statement as a standard will not know what students are to do or how to measure their performance.
	3.MD.C.5b. A plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square units.	This explanation of a special case for the stem statement is listed as a separate standard in the NYS but does not describe student performance. A teacher who attempts to use this explanation of a special case for the stem statement as a standard will not know what students are to do or how to measure their performance.
 3.MD.6. Measure areas by counting unit squares (square cm, square m, square in, square ft., and improvised units). 3.MD.7. Relate area to the operations of 	 3.MD.C.6. Measure areas by counting unit squares (square cm, square m, square in, square ft, and improvised units). 3.MD.C.7. Relate area to the operations of 	
multiplication and addition.	multiplication and addition.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
3.MD.7a Find the area of a rectangle with whole-	3.MD.C.7a. Find the area of a rectangle with	
number side lengths by tiling it, and show that	whole-number side lengths by tiling it, and show	
the area is the same as would be found by	that the area is the same as would be found by	
multiplying the side lengths.	multiplying the side lengths.	
3.MD.7b Multiply side lengths to find areas of	3.MD.C.7b. Multiply side lengths to find areas of	
rectangles with whole- number side lengths in	rectangles with whole-number side lengths in	
the context of solving real world and	the context of solving real world and	
mathematical problems, and represent whole-	mathematical problems, and represent whole-	
number products as rectangular areas in	number products as rectangular areas in	
mathematical reasoning.	mathematical reasoning.	
3.MD.7c Use tiling to show in a concrete case	3.MD.C.7c. Use tiling to show in a concrete case	NYS added a visual example.
that the area of a rectangle with whole-number	that the area of a rectangle with whole-number	
side lengths a and $b + c$ is the sum of a x b and	side lengths a and $b + c$ is the sum of a \times b and a	
a x c. Use area models to represent the	× c. Use area models to represent the	
distributive property in mathematical reasoning.	distributive property in mathematical reasoning.	
	[geometric figure added]	
3.MD.7d Recognize area as additive. Find areas	3.MD.C.7d. Recognize area as additive. Find	NYS replaced the explanation of what "additive"
of rectilinear figures by decomposing them into	areas of figures composed of non-overlapping	means for area with a visual example.
non-overlapping rectangles and adding the areas	rectangles, including within the context of real	
of the non-overlapping parts, applying this	world problems. For example,	
technique to solve real world problems.	[geometric figure added]	
Geometric measurement: recognize perimeter	D. Geometric measurement: recognize	
as an attribute of plane figures and distinguish	perimeter as an attribute of plane figures and	
between linear and area measures.	distinguish between linear and area measures.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
3.MD.8. Solve real world and mathematical	3.MD.C.8. Solve real world and mathematical	NYS changed "exhibiting rectangles" to
problems involving perimeters of polygons,	problems involving perimeters of polygons,	"represent rectangles" This wording is
including finding the perimeter given the side	including finding the perimeter given the side	awkward as there is not a clear meaning for
lengths, finding an unknown side length, and	lengths, finding an unknown side length.	"represent rectangles."
exhibiting rectangles with the same perimeter	Represent rectangles with the same perimeter	
and different areas or with the same area and	and different areas or with the same area and	
different perimeters.	different perimeters.	
Geometry		
Reason with shapes and their attributes.	A. Reason with shapes and their attributes.	
3.G.1. Understand that shapes in different		This CCSS has no match in the NYS. Classification
categories (e.g., rhombuses, rectangles, and		of different shapes within a category (e.g.
others) may share attributes (e.g., having four		quadrilateral) is not addressed in the NYS at this
sides), and that the shared attributes can define		grade.
a larger category (e.g., quadrilaterals). Recognize		NYS adjusted the progression leading to this
rhombuses, rectangles, and squares as examples		standard (with justification). This standard,
of quadrilaterals, and draw examples of		however, was lost in the process. NOTE: NYS
quadrilaterals that do not belong to any of these		3.G.A.1 aligns with Gr 2 in the CCSS (See 2.G.1).
subcategories.		
3.G.2. Partition shapes into parts with equal	3.G.A.2. Partition shapes into parts with equal	
areas. Express the area of each part as a unit	areas. Express the area of each part as a unit	
fraction of the whole. <i>For example, partition a</i>	fraction of the whole. For example, partition a	
shape into 4 parts with equal area, and describe	shape into 4 parts with equal area, and describe	
the area of each part as 1/4 of the area of the	the area of each part as 1/4 of the area of the	
shape.	shape.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
GRADE 4		
Operations and Algebraic Thinking		
Use the four operations with whole numbers to	A. Use the four operations with whole numbers	
solve problems.	to solve problems.	
4.OA.1. Interpret a multiplication equation as a	4.OA.A.1. Interpret a multiplication equation as a	
comparison, e.g., interpret 35 = 5 X 7 as a	comparison, e.g., interpret 35 = 5 x 7 as a	
statement that 35 is 5 times as many as 7 and 7	statement that 35 is 5 times as many as 7 and 7	
times as many as 5. Represent verbal statements	times as many as 5. Represent verbal statements	
of multiplicative comparisons as multiplication	of multiplicative comparisons as multiplication	
equations.	equations.	
4.OA.2. Multiply or divide to solve word	4.OA.A.2. Multiply or divide to solve word	The NYS reference to "glossary table 2" needs
problems involving multiplicative comparison,	problems involving multiplicative comparison,	clarification. There is no table 2 in the "glossary
e.g., by using drawings and equations with a	e.g., by using drawings and equations with a	of verbs," the only glossary in these standards.
symbol for the unknown number to represent	symbol for the unknown number to represent	
the problem, distinguishing multiplicative	the problem, distinguishing multiplicative	
comparison from additive comparison. [See	comparison from additive comparison. See	
Glossary, Table 2.]	glossary table 2.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
4.OA.3. Solve multistep word problems posed	4.OA.A.3. Solve multistep word problems posed	NYS added the requirement to "understand that
with whole numbers and having whole-number	with whole numbers and having whole-number	multiplication is always done before addition"
answers using the four operations, including	answers using the four operations, including	when no parentheses are present. This may not
problems in which remainders must be	problems in which remainders must be	be precisely accurate. For example, what if there
interpreted. Represent these problems using	interpreted.	was a fraction with the numerator as a sum? In
equations with a letter standing for the	a. Represent these problems using equations or	that case a student would add first and then
unknown quantity. Assess the reasonableness of	expressions with a letter standing for the	divide. NYS may consider using the phrase
answers using mental computation and	unknown quantity.	"order of operations" to help teachers when
estimation strategies including rounding.	b. When problems include multiplication and	they are looking for it in the progression. More
	addition, understand that multiplication is	support may be needed to ensure that teachers
	always done before addition - unless	have a consistent understanding of the note. The
	parentheses are included.	meaning and intention is not clear.
	c. Assess the reasonableness of answers using	
	mental computation and estimation strategies	
	including rounding.	
	Note: Multistep problems need not be	
	represented by a single expression or equation.	
Gain familiarity with factors and multiples.	B. Gain familiarity with factors and multiples	
4.OA.4. Find all factor pairs for a whole number	4.OA.B.4. Find all factor pairs for a whole	•
in the range 1–100. Recognize that a whole	number in the range 1-100. Recognize that a	
number is a multiple of each of its factors.	whole number is a multiple of each of its factors.	
Determine whether a given whole number in the	Determine whether a given whole number in the	
range 1–100 is a multiple of a given one-digit	range 1-100 is a multiple of a given one-digit	
number. Determine whether a given whole	number. Determine whether a given whole	
number in the range 1–100 is prime or	number in the range 1-100 is prime or	
composite.	composite.	
Generate and analyze patterns.	C. Generate and analyze patterns.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
4.OA.5. Generate a number or shape pattern	4.OA.C.5. Generate a number or shape pattern	
that follows a given rule. Identify apparent	that follows a given rule. Identify apparent	
features of the pattern that were not explicit in	features of the pattern that were not explicit in	
the rule itself. For example, given the rule "Add	the rule itself. For example, given the rule "Add	
3" and the starting number 1, generate terms in	3" and the starting number 1, generate terms in	
the resulting sequence and observe that the	the resulting sequence and observe that the	
terms appear to alternate between odd and	terms appear to alternate between odd and	
even numbers. Explain informally why the	even numbers. Explain informally why the	
numbers will continue to alternate in this way.	numbers will continue to alternate in this way.	
Numbers and Operations in Base Ten	Number & Operations in Base Ten	NYS added the CCSS footnote only to 4.NBT.B.4,
[Grade 4 expectations in this domain are limited		5, and 6.
to whole numbers less than or equal to		
1,000,000.]		
Generalize place value understanding for multi-	A. Generalize place value understanding for	
digit whole numbers.	multi-digit whole numbers.	
4.NBT.1. Recognize that in a multi-digit whole	4.NBT.A.1. Recognize that in a multi-digit whole	The limitation for this standard is less clear
number, a digit in one place represents ten	number, a digit in one place represents ten	without the domain footnote.
times what it represents in the place to its right.	times what it represents in the place to its right.	
For example, recognize that 700 ÷ 70 = 10 by	For example, recognize that $70 \times 10 = 700$ (and,	
applying concepts of place value and division.	therefore, 700 ÷ 70 = 10) by applying concepts	
	of place value, multiplication, and division.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
4.NBT.2. Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi- digit numbers based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons.	4.NBT.A.2. Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi- digit numbers based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons. <u>Note:</u> Expanded Form in grade 4 should take the form of: $(3 \times 100) + (2 \times 10) + (7 \times 1)$ * with or without parentheses. This representation helps scaffold depth of understanding of the base-ten number system from 2.NBT.A.3 towards that which is required by 5.NBT.A.3a.	NYS added a note for teachers. Clarity is needed to explain what is meant by "scaffold depth of understanding." Is the intention to imply that this standard fits into a progression? If so, this should be made more clear. The limitation for this standard is less clear without the domain footnote.
4.NBT.3. Use place value understanding to round multi-digit whole numbers to any place.	4.NBT.A.3. Use place value understanding to round multi-digit whole numbers to any place. (Grade 4 expectations in this domain are limited to whole numbers less than or equal to 1,000,000.)	The CCSS domain title footnote was included as part of this NYS.
Use place value understanding and properties of operations to perform multi-digit arithmetic.	B. Use place value understanding and properties of operations to perform multi-digit arithmetic.	
4.NBT.4. Fluently add and subtract multi-digit whole numbers using the standard algorithm.	4.NBT.B.4. Fluently add and subtract multi-digit whole numbers using the standard algorithm. (Grade 4 expectations in this domain are limited to whole numbers less than or equal to 1,000,000. A range of algorithms may be used.)	The previous CCSS domain title footnote was included as part of this NYS. While the body of the NYS is a perfect match with the CCSS, "using the standard algorithm" is changed to "a range of algorithms" in the parenthetical statement in NYS. It is not clear in the NYS whether the student will be required to apply the standard algorithm.

CCSS/Current NYS	2018-19 NYS	Notes and Comments
4.NBT.5. Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based	4.NBT.B.5. Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies	The CCSS domain title footnote was included as part of this NYS.
on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. (Grade 4 expectations in this domain are limited to whole numbers less than or equal to 1,000,000. A range of algorithms may be used.)	
4.NBT.6. Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	4.NBT.B.6. Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. (Grade 4 expectations in this domain are limited to whole numbers less than or equal to 1,000,000. A range of algorithms may be used.)	The CCSS domain title footnote was included as part of this NYS.

Number & Operations - Fractions (limited to denominators 2, 3, 4, 5, 6, 8, 10, 12, 100)	•
denominators 2, 3, 4, 5, 6, 8, 10, 12, 100)	
A. Extend understanding of fraction	
equivalence and ordering.	
4.NF.A.1. Explain why a fraction a/b is equivalent	NYS commuted the numerator expressions and
to a fraction (a × n)/(b × n) by using visual	added the visual example.
fraction models, with attention to how the	
number and size of the parts differ even though	
the two fractions themselves are the same size.	
Use this principle to recognize and generate	
equivalent fractions. For example,	
[geometric figure added]	
1111	equivalence and ordering. 4.NF.A.1. Explain why a fraction a/b is equivalent to a fraction $(a \times n)/(b \times n)$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions. For example,

CCSS/Current NYS	2018-19 NYS	Notes and Comments
4.NF.2. Compare two fractions with different	4.NF.A.2. Compare two fractions with different	The CCSS domain title footnote was included as
numerators and different denominators, e.g., by	numerators and different denominators, e.g., by	part of this NYS. It is not clear why this is the
creating common denominators or numerators,	creating common denominators or numerators,	case only for this particular NYS in the cluster.
or by comparing to a benchmark fraction such as	or by comparing to a benchmark fraction such as	Since the footnote is included as part of the
1/2. Recognize that comparisons are valid only	1/2. Recognize that comparisons are valid only	domain title, it would be assumed to apply here,
when the two fractions refer to the same whole.	when the two fractions refer to the same whole.	making the extra note unnecessary.
Record the results of comparisons with symbols	Record the results of comparisons with symbols	
>, =, or <, and justify the conclusions, e.g., by	>, =, or <, and justify the conclusions, e.g., by	
using a visual fraction model.	using a visual fraction model. (Grade 4	
	expectations in this domain are limited to	
	fractions with denominators 2, 3, 4, 5, 6, 8, 10,	
	12, and 100.)	
Build fractions from unit fractions by applying	B. Build fractions from unit fractions by	
and extending previous understandings of	applying and extending previous	
operations on whole numbers.	understandings of operations on whole	
	numbers.	
4.NF.3. Understand a fraction a/b with $a > 1$ as	4.NF.B.3. Understand a fraction a/b with a > 1 as	NYS included an explanation of 1/b as a unit
a sum of fractions 1/b.	a sum of fractions 1/b (the unit fraction for a/b).	fraction.
4.NF.3a Understand addition and subtraction of	4.NF.B.3a. Understand addition and subtraction	
fractions as joining and separating parts	of fractions as joining and separating parts	
referring to the same whole.	referring to the same whole.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
4.NF.3b Decompose a fraction into a sum of	4.NF.B.3b. Decompose a fraction into a sum of	NYS bulleted the examples.
fractions with the same denominator in more	fractions with the same denominator in more	
than one way, recording each decomposition by	than one way, recording each decomposition by	
an equation. Justify decompositions, e.g., by	an equation. Justify decompositions, e.g., by	
using a visual fraction model. <i>Examples: 3/8 =</i>	using a visual fraction model. Examples:	
1/8 + 1/8 + 1/8 ; 3/8 = 1/8 + 2/8 ; 2 1/8 = 1 + 1 +	• 3/8 = 1/8 + 1/8 + 1/8	
1/8 = 8/8 + 8/8 + 1/8.	• 3/8 = 1/8 + 2/8	
	• 2 1/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8	
4.NF.3c Add and subtract mixed numbers with	4.NF.B.3c. Add and subtract mixed numbers with	
like denominators, e.g., by replacing each mixed	like denominators, e.g., by replacing each mixed	
number with an equivalent fraction, and/or by	number with an equivalent fraction, and/or by	
using properties of operations and the	using properties of operations and the	
relationship between addition and subtraction.	relationship between addition and subtraction.	
4.NF.3d Solve word problems involving addition	4.NF.B.3d. Solve word problems involving	
and subtraction of fractions referring to the	addition and subtraction of fractions referring to	
same whole and having like denominators, e.g.,	the same whole and having like denominators,	
by using visual fraction models and equations to	e.g., by using visual fraction models and	
represent the problem.	equations to represent the problem.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
4.NF.4. Apply and extend previous understandings of multiplication to multiply a fraction by a whole number.	4.NF.B.4. Apply and extend previous understandings of multiplication to multiply a fraction by a whole number. <u>Note:</u> This standard is limited to n groups of a fraction (where n is a whole number). For example, 4 groups of 1/3; which lends itself to being thought about as repeated addition.	NYS added a note to clarify the limitations for this standard. The note is mathematically troublesome in that it departs from multiplication as it is understood in 4.OA, and contradicts the subparts of the standard. Note also that 3.OA.2 does not mention "repeated addition" (nor does any standard) but speaks of 5 times 7 as 5 groups of 7 objects each. Should students think of 4 times 1/3 as 4 groups of 1/3 object each? It also should be pointed out that repeated addition only works marginally with multiplication of fractions and not at all for multiplication involving irrational numbers (an example that expires).
4.NF.4a Understand a fraction a / b as a multiple of 1/b. For example, use a visual fraction model to represent 5/4 as the product 5 × (1/4), recording the conclusion by the equation 5/4 = 5 × (1/4).	4.NF.B.4a. Understand a fraction a/b as a multiple of 1/b. For example, use a visual fraction model to represent 5/4 as the product 5 \times (1/4), recording the conclusion by the equation 5/4 = 5 \times (1/4).	NVC added a visual example
4.NF.4b Understand a multiple of a / b as a multiple of $1/b$, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times (2/5)$ as $6 \times (1/5)$, recognizing this product as $6/5$. (In general, $n \times (a/b) = (n \times a)/b$.)	4.NF.B.4b. Understand a multiple of a/b as a multiple of 1/b, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times (2/5)$ as $6 \times (1/5)$, recognizing this product as $6/5$. (In general, $n \times (a/b) = (n \times a)/b$.) [geometric figure added]	NYS added a visual example.

CCSS/Current NYS	2018-19 NYS	Notes and Comments
4.NF.4c Solve word problems involving	4.NF.B.4c. Solve word problems involving	
multiplication of a fraction by a whole number,	multiplication of a fraction by a whole number,	
e.g., by using visual fraction models and	e.g., by using visual fraction models and	
equations to represent the problem. For	equations to represent the problem. For	
example, if each person at a party will eat 3/8 of	example, if each person at a party will eat 3/8 of	
a pound of roast beef, and there will be 5 people	a pound of roast beef, and there will be 5 people	
at the party, how many pounds of roast beef will	at the party, how many pounds of roast beef will	
be needed? Between what two whole numbers	be needed? Between what two whole numbers	
does your answer lie?	does your answer lie?	
Understand decimal notation for fractions, and	C. Understand decimal notation for fractions,	
compare decimal fractions.	and compare decimal fractions.	
4.NF.5. Express a fraction with denominator 10	4.NF.C.5. Express a fraction with denominator 10	NYS added the footnote for this domain to the
as an equivalent fraction with denominator 100,	as an equivalent fraction with denominator 100,	standard.
and use this technique to add two fractions with	and use this technique to add two fractions with	
respective denominators 10 and 100.4 For	respective denominators 10 and 100. For	
example, express 3/10 as 30/100, and add 3/10	example, express 3/10 as 30/100 and add 3/10 +	
+ 4/100 = 34/100. [Students who can generate	4/100 = 34/100. (Students who can generate	
equivalent fractions can develop strategies for	equivalent fractions can develop strategies for	
adding fractions with unlike denominators in	adding fractions with unlike denominators in	
general. But addition and subtraction with unlike	general. But addition and subtraction with unlike	
denominators in general is not a requirement at	denominators in general is not a requirement at	
this grade.]	this grade.) (Grade 4 expectations in this domain	
	are limited to fractions with denominators 2, 3,	
	4, 5, 6, 8, 10, 12, and 100.)	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
4.NF.6. Use decimal notation for fractions with	4.NF.C.6. Use decimal notation for fractions with	NYS added the footnote for this domain to the
denominators 10 or 100. For example, rewrite	denominators 10 or 100. For example, rewrite	standard.
0.62 as 62/100; describe a length as 0.62	0.62 as 62/100; describe a length as 0.62	
meters; locate 0.62 on a number line diagram.	meters; locate 0.62 on a number line diagram.	
	(Grade 4 expectations in this domain are limited	
	to fractions with denominators 2, 3, 4, 5, 6, 8,	
	10, 12, and 100.)	
4.NF.7. Compare two decimals to hundredths by	4.NF.C.7. Compare two decimals to hundredths	NYS added the footnote for this domain to the
reasoning about their size. Recognize that	by reasoning about their size. Recognize that	standard.
comparisons are valid only when the two	comparisons are valid only when two decimals	
decimals refer to the same whole. Record the	refer to the same whole. Record the results of	
results of comparisons with the symbols >, =, or	comparisons with the symbols >, =, or <, and	
<, and justify the conclusions, e.g., by using a	justify the conclusions, e.g., by using a visual	
visual model.	model. (Grade 4 expectations in this domain are	
	limited to fractions with denominators 2, 3, 4, 5,	
	6, 8, 10, 12, and 100.)	
Measurement and Data		
Solve problems involving measurement and	A. Solve problems involving measurement and	
conversion of measurements from a larger unit	conversion of measurements from a larger unit	
to a smaller unit.	to a smaller unit.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
4.MD.1. Know relative sizes of measurement	4.MD.A.1. Within a single system of	NYS split the compound CCSS into separate sub
units within one system of units including km, m,	measurement, express measurements in a larger	parts, making the second sentence in the CCSS
cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a	unit in terms of a smaller unit.	the stem statement for the standard. In this
single system of measurement, express	a. Know relative sizes of units: ft., in.; hr., min.,	case, the sub parts and their examples do not
measurements in a larger unit in terms of a	sec. For example, know that 1 ft. is 12 times as	always match the stem standard. It appears that
smaller unit. Record measurement equivalents	long as 1 in. Express the length of a 4 ft. snake	the NYS version requires different units for the
in a two- column table. For example, know that	as 48 in.	different parts, however, making the limitations
1 ft is 12 times as long as 1 in. Express the length	b. Convert units within one system of units when	different. It is not clear whether the lists of units
of a 4 ft snake as 48 in. Generate a conversion	the conversion factor is given (e.g., km, m, cm;	are comprehensive, but that appears to be the
table for feet and inches listing the number pairs	kg, g; lb., oz.; l, ml).	case. The rationale provided in the "additional
(1, 12), (2, 24), (3, 36),	c. Record measurement equivalents in a two	notes" (accompanying the NYS) for requiring
	column table. For example, generate a	different units is that students will be required
	conversion table for feet and inches listing the	to know only the conversions that are not given
	number pairs (1, 12), (2, 24), (3, 36),	on "reference sheets" in future grades. In this
		NYS version, knowing relative sizes of units
		appears to be limited to feet/inches and
		hour/min/sec, none of which are required for
		conversions within a system in part b. And
		km/m/cm, kg/g, ounce/lb, and liter/mL are used
		as examples for conversion within the system
		but not for knowing relative size.
		Clarity: "convert units within one system of
		units" is unclear. It would be clearer to say
		"within one system of measurement."

CCSS/Current NYS	2018-19 NYS	Notes and Comments
4.MD.2. Use the four operations to solve word	4.MD.A.2. Use the four operations to solve word	NYS split the parts of this compound CCSS but
problems involving distances, intervals of time,	problems involving distances, intervals of time,	did not separate the parts into different
liquid volumes, masses of objects, and money,	liquid volumes, masses of objects, and money.	standards. They removed the descriptor
including problems involving simple fractions or	a. Solve problems involving fractions or	"simple" for fractions and decimals.
decimals, and problems that require expressing	decimals, and problems that require expressing	
measurements given in a larger unit in terms of	measurements given in a larger unit in terms of	
a smaller unit. Represent measurement	a smaller unit.	
quantities using diagrams such as number line	b. Represent measurement quantities using	
diagrams that feature a measurement scale.	diagrams that feature a measurement scale,	
	such as number lines.	
4.MD.3. Apply the area and perimeter formulas	4.MD.A.3. Apply the area and perimeter	
for rectangles in real world and mathematical	formulas for rectangles in real world and	
problems. For example, find the width of a	mathematical problems. For example, find the	
rectangular room given the area of the flooring	width of a rectangular room given the area of	
and the length, by viewing the area formula as a	the flooring and the length, by viewing the area	
multiplication equation with an unknown factor.	formula as a multiplication equation with an	
	unknown factor.	
Represent and interpret data.	B. Represent and interpret data.	
4.MD.4. Make a line plot to display a data set of	4.MD.B.4. Make a line plot to display a data set	NYS added more detail to the example.
measurements in fractions of a unit (1/2, 1/4,	of measurements in fractions of a unit (1/2, 1/4,	
1/8). Solve problems involving addition and	1/8). Solve problems involving addition and	
subtraction of fractions by using information	subtraction of fractions by using information	
presented in line plots. For example, from a line	presented in line plots. For example, given	
plot find and interpret the difference in length	measurement data on a line plot, find and	
between the longest and shortest specimens in	interpret the difference in length between the	
an insect collection.	longest and shortest specimens in an insect	
	collection.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Geometric measurement: understand concepts	C. Geometric measurement: understand	
of angle and measure angles.	concepts of angle and measure angles.	
4.MD.5. Recognize angles as geometric shapes	4.MD.C.5. Recognize angles as geometric shapes	NYS left the colon at the end of this stem
that are formed wherever two rays share a	that are formed wherever two rays share a	statement but separated the sub parts into
common endpoint, and understand concepts of	common endpoint, and understand concepts of	separate standards. This leaves the separate
angle measurement:	angle measurement:	stem statement with a punctuation problem and
a. An angle is measured with reference to a		the sub parts without a performance objective.
circle with its center at the common endpoint of		(Туро)
the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through 1/360 of a circle is called a "one-degree angle," and can be used to measure angles. b. An angle that turns through n one-degree angles is said to have an angle measure of n degrees.	4.MD.C.5a. An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through 1/360 of a circle is called a "one-degree angle," and can be used to measure angles.	This explanation of a special case for the stem statement is listed as a separate standard in the NYS but does not describe student performance. A teacher who attempts to use this explanation of a special case for the stem statement as a standard will not know what students are to do or how to measure their performance.
	4.MD.C.5b. An angle that turns through n one- degree angles is said to have an angle measure of n degrees.	This explanation of a special case for the stem statement is listed as a separate standard in the NYS but does not describe student performance. A teacher who attempts to use this explanation of a special case for the stem statement as a standard will not know what students are to do or how to measure their performance.
4.MD.6. Measure angles in whole-number	4.MD.C.6. Measure angles in whole-number	
degrees using a protractor. Sketch angles of	degrees using a protractor. Sketch angles of	
specified measure.	specified measure.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
4.MD.7. Recognize angle measure as additive.	4.MD.C.7. Recognize angle measure as additive.	NYS removed the CCSS example and added a
When an angle is decomposed into non-	When an angle is decomposed into non-	"connection."
overlapping parts, the angle measure of the	overlapping parts, the angle measure of the	
whole is the sum of the angle measures of the	whole is the sum of the angle measures of the	
parts. Solve addition and subtraction problems	parts. Solve addition and subtraction problems	
to find unknown angles on a diagram in real	to find unknown angles on a diagram in real	
world and mathematical problems, e.g., by using	world and mathematical problems.	
an equation with a symbol for the unknown	<u>Connection:</u> By using an equation with a symbol	
angle measure.	for the unknown angle measure, students	
	connect this work with 4.OA.A.3.	
Geometry		
Draw and identify lines and angles, and classify	A. Draw and identify lines and angles, and	
shapes by properties of their lines and angles.	classify shapes by properties of their lines and	
	angles.	
4.G.1. Draw points, lines, line segments, rays,	4.G.A.1. Draw points, lines, line segments, rays,	
angles (right, acute, obtuse), and perpendicular	angles (right, acute, obtuse), and perpendicular	
and parallel lines. Identify these in two-	and parallel lines. Identify these in two-	
dimensional figures.	dimensional figures.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
4.G.2. Classify two-dimensional figures based on	4.G.A.2. Classify triangles based on angle size.	NYS limited "two-dimensional figures" to
the presence or absence of parallel or	Classify quadrilaterals based on the presence or	triangles and quadrilaterals, which appears to be
perpendicular lines, or the presence or absence	absence of parallel or perpendicular lines, or the	less rigorous than the CCSS. But then they
of angles of a specified size. Recognize right	presence or absence of angles of a specified size.	require classification of triangles "based on angle
triangles as a category, and identify right		size." It is not clear whether this means students
triangles.		at this grade level are expected to recognize and
		define triangles as acute, obtuse, Isosceles,
		equilateral, and right. This appears to go beyond
		the CCSS, which specifically requires recognition
		of right triangles but not other defined triangles.
4.G.3. Recognize a line of symmetry for a two-	4.G.A.3. Recognize a line of symmetry for a two-	
dimensional figure as a line across the figure	dimensional figure as a line across the figure	
such that the figure can be folded along the line	such that the figure can be folded along the line	
into matching parts. Identify line-symmetric	into matching parts. Identify line-symmetric	
figures and draw lines of symmetry.	figures and draw lines of symmetry.	
Gr 4 Total		
GRADE 5		
Operations and Algebraic Thinking		
Write and interpret numerical expressions.	A. Write and interpret numerical expressions	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
5.OA.1. Use parentheses, brackets, or braces in	5.OA.A.1. Apply order of operations to evaluate	Clarity is needed for this NYS as it leaves an
numerical expressions, and evaluate expressions	numerical expressions involving only	unclear picture of what an expression would
with these symbols.	parentheses and/or the four operations.	look like. All references to symbols of inclusion
		except for parentheses were removed from the
		NYS. An explanation is needed for the phrase,
		"numerical expressions involving only
		parentheses and/or the four operations." First,
		there appears to be an article missing in opening
		for the standard: "apply THE order of
		operations." Second, since the expressions are
		numerical, it would be assumed that these
		expressions involve numbers but not variables.
		Given that assumption, what is the rationale for
		requiring ONLY parentheses? Would an
		expression requiring parentheses within
		parentheses be clearly understood? And then,
		the "or" part of "and/or" makes it seem that
		either all four or none of the operations would
		be involved. How would expressions involve
		numbers and parentheses but none of the
		operations? Also by using the term, "numerical
		expressions" the use of one or more operations
		would be assumed. This NYS would read less
		awkwardly if it were, " <u>Apply the order of</u>
		operations to evaluate numerical expressions
		involving parentheses."
		The CCSS first mentions order of operations in
		Grade 3 (footnote on 3.OA.8).

2018-19 NYS	Notes and Comments
5.OA.A.2. Write simple expressions that record	
calculations with numbers, and interpret	
numerical expressions without evaluating them.	
For example, express the calculation "add 8 and	
7, then multiply by 2" as 2 × (8 + 7). Recognize	
that 3 × (18932 + 921) is three times as large as	
18932 + 921, without having to calculate the	
indicated sum or product.	
B. Analyze patterns and relationships.	
5.OA.B.3. Generate two numerical patterns	
using two given rules. Identify apparent	
relationships between corresponding terms.	
Form ordered pairs consisting of corresponding	
terms from the two patterns, and graph the	
ordered pairs on a coordinate plane. For	
example, given the rule "Add 3" and the starting	
number 0, and given the rule "Add 6" and the	
starting number 0, generate terms in the	
resulting sequences, and observe that the terms	
in one sequence are twice the corresponding	
terms in the other sequence. Explain informally	
why this is so.	
	calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7, then multiply by 2" as 2 × (8 + 7). Recognize that 3 × (18932 + 921) is three times as large as 18932 + 921, without having to calculate the indicated sum or product. B. Analyze patterns and relationships. 5.OA.B.3. Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3" and the starting number 0, and given the rule "Add 6" and the starting number 0, generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Numbers and Operations in Base Ten		
Understand the place value system.	A. Understand the place value system.	
5.NBT.1. Recognize that in a multi-digit number,	5.NBT.A.1. Recognize that in a multi-digit	
a digit in one place represents 10 times as much	number, a digit in one place represents 10 times	
as it represents in the place to its right and 1/10	as much as it represents in the place to its right	
of what it represents in the place to its left.	and 1/10 of what it represents in the place to its	
	left.	
5.NBT.2. Explain patterns in the number of zeros	5.NBT.A.2. Use whole-number exponents to	NYS changed the order of the sentences but not
of the product when multiplying a number by	denote powers of 10. Explain patterns in the	the content of this CCSS.
powers of 10, and explain patterns in the	number of zeros of the product when	
placement of the decimal point when a decimal	multiplying a number by powers of 10, and	
is multiplied or divided by a power of 10. Use	explain patterns in the placement of the decimal	
whole-number exponents to denote powers of	point when a decimal is multiplied or divided by	
10.	a power of 10.	
5.NBT.3. Read, write, and compare decimals to	5.NBT.A.3. Read, write, and compare decimals to	
thousand ths.	thousand ths.	
5.NBT.3a Read and write decimals to	5.NBT.A3a. Read and write decimals to	NYS added the possibility of using decimal
thousandths using base-ten numerals, number	thousandths using base-ten numerals, number	versions in the expanded form of decimal
names, and expanded form, e.g., 347.392 = 3 x	names, and expanded form, (e.g., 347.392 = 3 ×	numbers.
100 + 4 x 10 + 7 x 1 + 3 x (1/10) + 9 x (1/100) + 2	$100 + 4 \times 10 + 7 \times 1 + 3 \times (1/10) + 9 \times (1/100) + 2$	
x (1/1000).	× (1/1000), or equivalent form using decimals for	
	the unit fraction).	
5.NBT.3b Compare two decimals to thousandths	5.NBT.A.3b. Compare two decimals to	
based on meanings of the digits in each place,	thousandths based on meanings of the digits in	
using >, =, and < symbols to record the results of	each place, using >, =, and < symbols to record	
comparisons.	the results of comparisons.	
5.NBT.4. Use place value understanding to round	5.NBT.A.4. Use place value understanding to	
decimals to any place.	round decimals to any place.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Perform operations with multi-digit whole numbers and with decimals to hundredths.	B. Perform operations with multi-digit whole numbers and with decimals to hundredths.	
5.NBT.5. Fluently multiply multi-digit whole numbers using the standard algorithm.	5.NBT.B.5. Fluently multiply multi-digit whole numbers using the standard algorithm.	•
5.NBT.6. Find whole-number quotients of whole numbers with up to four-digit dividends and two- digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	.NBT.B.6. Find whole-number quotients of whole numbers with up to four-digit dividends and two- digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	•
5.NBT.7. Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.	5.NBT.B.7. Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between operations. Relate the strategy to a written method and explain the reasoning used. <u>Note</u> : Division problems are limited to those that allow the use of concrete models, strategies based on properties of operations, and/or the relationship between operations. Problems should not be so complex as to require the use of an algorithm.	NYS changed from the requirement to use the relationship between just addition and subtraction to those between all operations. They also added a limitation for division.

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Number and Operations – Fractions		
Use equivalent fractions as a strategy to add	A. Use equivalent fractions as a strategy to add	
and subtract fractions.	and subtract fractions.	
5.NF.1. Add and subtract fractions with unlike	5.NF.A.1. Add and subtract fractions with unlike	NYS replaced the general example in the CCSS
denominators (including mixed numbers) by	denominators (including mixed numbers) by	with a different specific one.
replacing given fractions with equivalent	replacing given fractions with equivalent	
fractions in such a way as to produce an	fractions in such a way as to produce an	
equivalent sum or difference of fractions with	equivalent sum or difference of fractions with	
like denominators. For example, 2/3 + 5/4 =	like denominators. For example,	
8/12 + 15/12 = 23/12. (In general, a/b + c/d =	• 1/3 + 2/9 = 3/9 + 2/9 = 5/9	
(ad + bc)/bd.)	• 2/3 + 5/4 = 8/12 + 15/12 = 23/12	
5.NF.2. Solve word problems involving addition	5.NF.A.2. Solve word problems involving	
and subtraction of fractions referring to the	addition and subtraction of fractions referring to	
same whole, including cases of unlike	the same whole, including cases of unlike	
denominators, e.g., by using visual fraction	denominators, e.g., by using visual fraction	
models or equations to represent the problem.	models or equations to represent the problem.	
Use benchmark fractions and number sense of	Use benchmark fractions and number sense of	
fractions to estimate mentally and assess the	fractions to estimate mentally and assess the	
reasonableness of answers. For example,	reasonableness of answers. For example,	
recognize an incorrect result 2/5 + 1/2 = 3/7, by	recognize an incorrect result 2/5 + 1/2 = 3/7 by	
observing that 3/7 < 1/2.	observing that 3/7 < 1/2.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Apply and extend previous understandings of	B. Apply and extend previous understandings of	
multiplication and division to multiply and	multiplication and division to multiply and	
divide fractions.	divide fractions	
5.NF.3. Interpret a fraction as division of the	5.NF.B.3. Interpret a fraction as division of the	NYS used bullets to separate the two CCSS
numerator by the denominator $(a/b = a \div b)$.	numerator by the denominator $(a/b = a \div b)$.	examples.
Solve word problems involving division of whole	Solve word problems involving division of whole	
numbers leading to answers in the form of	numbers leading to answers in the form of	
fractions or mixed numbers, e.g., by using visual	fractions or mixed numbers, (e.g., by using visual	
fraction models or equations to represent the	fraction models or equations to represent the	
problem. For example, interpret 3/4 as the	problem). <i>For example,</i>	
result of dividing 3 by 4, noting that 3/4	• Interpret 3/4 as the result of dividing 3 by 4,	
multiplied by 4 equals 3, and that when 3 wholes	noting that 3/4 multiplied by 4 equals 3, and	
are shared equally among 4 people each person	that when 3 wholes are shared equally among 4	
has a share of size 3/4. If 9 people want to share	people each person has a share of size 3/4.	
a 50-pound sack of rice equally by weight, how	• If 9 people want to share a 50-pound sack of	
many pounds of rice should each person get?	rice equally by weight, how many pounds of rice	
Between what two whole numbers does your	should each person get? Between what two	
answer lie?	whole numbers does your answer lie?	
5.NF.4. Apply and extend previous	5.NF.B.4. Apply and extend previous	
understandings of multiplication to multiply a	understandings of multiplication to multiply a	
fraction or whole number by a fraction.	fraction or whole number by a fraction.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
5.NF.4a Interpret the product $(a / b) \times q$ as a	5.NF.B.4a. Interpret the product (a/b) × q as a	
parts of a partition of q into b equal parts;	parts of a partition of q into b equal parts;	
equivalently, as the result of a sequence of	equivalently, as the result of a sequence of	
operations <i>a x q ÷ b. For example, use a visual</i>	operations a × q ÷ b. For example, use a visual	
fraction model to show $(2/3) \times 4 = 8/3$, and	fraction model to show $(2/3) \times 4 = 8/3$, and	
create a story context for this equation. Do the	create a story context for this equation. Do the	
same with (2/3) × (4/5) = 8/15. (In general, (a/b)	same with (2/3) × (4/5) = 8/15.	
\times (c/d) = ac/bd.)		
5.NF.4b Find the area of a rectangle with	5.NF.B.4b. Find the area of a rectangle with	NYS changed "unit squares" to "rectangles," and
fractional side lengths by tiling it with unit	fractional side lengths by tiling it with rectangles	by doing so matched the Gr 3 - 5 progression
squares of the appropriate unit fraction side	of the appropriate unit fraction side lengths, and	document. They also added a visual example.
lengths, and show that the area is the same as	show that the area is the same as would be	This change and example is an improvement on
would be found by multiplying the side lengths.	found by multiplying the side lengths. Multiply	the CCSS.
Multiply fractional side lengths to find areas of	fractional side lengths to find areas of	
rectangles, and represent fraction products as	rectangles, and represent fraction products as	
rectangular areas.	rectangular areas. <i>For example, the figure below</i>	
	shows $(2/3) \times (3/4)$ by tiling it with rectangles of	
	the appropriate unit fraction side lengths.	
	[geometric figure added]	
	[]	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
5.NF.5. Interpret multiplication as scaling	5.NF.B.5. Interpret multiplication as scaling	In removing the colon, NYS left this standard as
(resizing), by:	(resizing) by	an incomplete sentence without punctuation. In
a. Comparing the size of a product to the size of		separating the sub parts of this CCSS, the
one factor on the basis of the size of the other		purpose of the parts, special cases of the
factor, without performing the indicated		standard, was lost. More revision is needed to
multiplication.		clearly identify a performance expectation in
b. Explaining why multiplying a given number by		those parts.
a fraction greater than 1 results in a product	5.NF.B.5a. Comparing the size of a product to	Measurability: While this NYS matches the
greater than the given number (recognizing	the size of one factor on the basis of the size of	language of the sub part of the CCSS, it is now a
multiplication by whole numbers greater than 1	the other factor, without performing the	separate standard that does not describe a
as a familiar case); explaining why multiplying a	indicated multiplication. For example, The	performance (missing a verb). This sub part
given number by a fraction less than 1 results in	product of 220 x 1/8 is half the product of 220 x	needs the stem statement attached for it to
a product smaller than the given number; and	1/4 because 1/8 is half of 1/4.	make sense. If a teacher takes this separated
relating the principle of fraction equivalence a/b		standard out of the context of its stem
= $(n \times a)/(n \times b)$ to the effect of multiplying a/b		statement, there is no way to know what
by 1.		student performance is required or how to
		measure it.

CCSS/Current NYS	2018-19 NYS	Notes and Comments
	5.NF.B.5b. Explaining why multiplying a given	Measurability: While this NYS matches the
	number by a fraction greater than 1 results in a	language of the sub part of the CCSS, making it a
	product greater than the given number	separate standard created one that does not
	(recognizing multiplication by whole numbers	describe a performance (missing a verb). This
	greater than 1 as a familiar case); explaining why	sub part needs the stem statement attached for
	multiplying a given number by a fraction less	it to make sense. If a teacher takes this
	than 1 results in a product smaller than the given	separated standard out of the context of its
	number; and relating the principle of fraction	stem statement, there is no way to know what
	equivalence a/b = <mark>(a×n) / (b×n)</mark> to the effect of	student performance is required or how to
	multiplying a/b by 1. <i>For example:</i>	measure it.
	• 3/2 x 4 > 4	
	• 1/2 x 4 < 4	NYS added examples and commuted the terms
	• 2/2 x 4 = 4	in the general equivalence.
5.NF.6. Solve real world problems involving	5.NF.B.6. Solve real world problems involving	•
multiplication of fractions and mixed numbers,	multiplication of fractions and mixed numbers,	
e.g., by using visual fraction models or equations	e.g., by using visual fraction models or equations	
to represent the problem.	to represent the problem.	
5.NF.7. Apply and extend previous	5.NF.B.7. Apply and extend previous	NYS added more specific information about
understandings of division to divide unit	understandings of division to divide unit	when fraction division is required.
fractions by whole numbers and whole numbers	fractions by whole numbers and whole numbers	
by unit fractions. [Students able to multiply	by unit fractions. (Students able to multiply	
fractions in general can develop strategies to	fractions in general can develop strategies to	
divide fractions in general, by reasoning about	divide fractions in general, by reasoning about	
the relationship between multiplication and	the relationship between multiplication and	
division. But division of a fraction by a fraction is	division. But division of a fraction by a fraction is	
not a requirement at this grade.]	not a requirement until grade 6, 6.NS.A.1.)	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
5.NF.7a Interpret division of a unit fraction by a	5.NF.B.7a. Interpret division of a unit fraction by	
non-zero whole number, and compute such	a non-zero whole number, and compute such	
quotients. For example, create a story context	quotients. For example, create a story context	
for (1/3) ÷ 4, and use a visual fraction model to	for $(1/3) \div 4$ and use a visual fraction model to	
show the quotient. Use the relationship between	show the quotient. Use the relationship	
multiplication and division to explain that (1/3) \div	between multiplication and division to explain	
4 = 1/12 because (1/12) × 4 = 1/3.	that (1/3) ÷ 4 = 1/12 because (1/12) × 4 = 1/3.	
5.NF.7b Interpret division of a whole number by	5.NF.B.7b. Interpret division of a whole number	
a unit fraction, and compute such quotients. For	by a unit fraction, and compute such quotients.	
example, create a story context for $4 \div (1/5)$,	For example, create a story context for $4 \div (1/5)$	
and use a visual fraction model to show the	and use a visual fraction model to show the	
quotient. Use the relationship between	quotient. Use the relationship between	
multiplication and division to explain that 4 ÷	multiplication and division to explain that 4 \div	
(1/5) = 20 because 20 × (1/5) = 4.	$(1/5) = 20$ because $20 \times (1/5) = 4$.	
5.NF.7c Solve real world problems involving	5.NF.B.7c. Solve real-world problems involving	
division of unit fractions by non-zero whole	division of unit fractions by non-zero whole	
numbers and division of whole numbers by unit	numbers and division of whole numbers by unit	
fractions, e.g., by using visual fraction models	fractions, e.g., by using visual fraction models	
and equations to represent the problem. For	and equations to represent the problem. For	
example, how much chocolate will each person	example, how much chocolate will each person	
get if 3 people share 1/2 lb of chocolate equally?	get if 3 people share 1/2 lb of chocolate equally?	
How many 1/3-cup servings are in 2 cups of	How many 1/3-cup servings are in 2 cups of	
raisins?	raisins?	
Measurement and Data		
Convert like measurement units within a given	A. Convert like measurement units within a	•
measurement system.	given measurement system.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
5.MD.1. Convert among different-sized standard	5.MD.A.1. Convert among different-sized	The NYS addition, "when the conversion factor is
measurement units within a given measurement	standard measurement units within a given	given" implies that the conversion is only
system (e.g., convert 5 cm to 0.05 m), and use	measurement system when the conversion	required when the factor is supplied to the
these conversions in solving multi-step, real	factor is given (e.g., convert 5 cm to 0.05 m). Use	student. This removes the need for students to
world problems.	these conversions in solving multi-step, real	know, for example, the number of inches in a
	world problems.	foot or centimeters in a meter. In 4.MD.A.1,
		there is an explanation that for later grades,
		some conversion factors are provided on
		"reference sheets." It is not clear in this NYS that
		the factors are given only for certain units.
Represent and interpret data.	B. Represent and interpret data.	
5.MD.2. Make a line plot to display a data set of	5.MD.B.2. Make a line plot to display a data set	
measurements in fractions of a unit (1/2, 1/4,	of measurements in fractions of a unit (1/2, 1/4,	
1/8). Use operations on fractions for this grade	1/8). Use operations on fractions for this grade	
to solve problems involving information	to solve problems involving information	
presented in line plots. For example, given	presented in line plots. For example, given	
different measurements of liquid in identical	different measurements of liquid in identical	
beakers, find the amount of liquid each beaker	beakers, find the amount of liquid each beaker	
would contain if the total amount in all the	would contain if the total amount in all the	
beakers were redistributed equally.	beakers were redistributed equally.	
Geometric measurement: understand concepts	C. Geometric measurement: understand	
of volume and relate volume to multiplication	concepts of volume and relate volume to	
and to addition.	multiplication and to addition.	
		Concretion the sub-ments of this standard
5.MD.3 Recognize volume as an attribute of	5.MD.C.3. Recognize volume as an attribute of	Separating the sub parts of this standard
solid figures and understand concepts of volume	solid figures and understand concepts of volume	requires more revision to make parts a and b
measurement.	measurement.	describe performances.

CCSS/Current NYS	2018-19 NYS	Notes and Comments
a. A cube with side length 1 unit, called a "unit	5.MD.C.3a. A cube with side length 1 unit, called	Measurability: In separating this standard from
cube," is said to have "one cubic unit" of	a "unit cube," is said to have "one cubic unit" of	its stem statement, NYS has created a standard
volume, and can be used to measure volume.	volume, and can be used to measure volume.	that has no performance requirement but is
b. A solid figure which can be packed without		rather a definition or statement of fact.
gaps or overlaps using n unit cubes is said to		
have a volume of n cubic units.	5.MD.C.3b. A solid figure which can be packed	Measurability: In separating this standard from
	without gaps or overlaps using n unit cubes is	its stem statement, NYS has created a standard
	said to have a volume of n cubic units.	that has no performance requirement but is
		rather a definition or statement of fact.
5.MD.4. Measure volumes by counting unit	5.MD.C.4. Measure volumes by counting unit	
cubes, using cubic cm, cubic in, cubic ft, and	cubes, using cubic cm, cubic in., cubic ft., and	
improvised units.	improvised units.	
5.MD.5. Relate volume to the operations of	5.MD.C.5. Relate volume to the operations of	
multiplication and addition and solve real world	multiplication and addition and solve real world	
and mathematical problems involving volume.	and mathematical problems involving volume.	
5.MD.5a Find the volume of a right rectangular	5.MD.C.5a. Find the volume of a right	NYS removed the requirement to represent
prism with whole-number side lengths by	rectangular prism with whole-number side	threefold products as volumes.
packing it with unit cubes, and show that the	lengths by packing it with unit cubes, and show	
volume is the same as would be found by	that the volume is the same as would be found	
multiplying the edge lengths, equivalently by	by multiplying the edge lengths, equivalently by	
multiplying the height by the area of the base.	multiplying the height by the area of the base.	
Represent threefold whole-number products as		
volumes, e.g., to represent the associative		
property of multiplication.		

CCSS/Current NYS	2018-19 NYS	Notes and Comments
5.MD.5b Apply the formulas $V = (I)(w)(h)$ and V	5.MD.C.5b. Apply the formulas V =(I)(w)(h) and V = (B)(h) for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems.	
5.MD.5c Recognize volume as additive. Find volumes of solid figures composed of two non- overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real world problems.	5.MD.C.5c. Recognize volume as additive. Find volumes of solid figures composed of two non- overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real world problems. <i>For example,</i> [geometric figure added]	NYS added a visual example.
Geometry		•
Graph points on the coordinate plane to solve real-world and mathematical problems.	A. Graph points on the coordinate plane to solve real-world and mathematical problems.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
5.G.1. Use a pair of perpendicular number lines,	5.G.A.1. Use a pair of perpendicular number	
called axes, to define a coordinate system, with	lines, called axes, to define a coordinate system,	
the intersection of the lines (the origin) arranged	with the intersection of the lines (the origin)	
to coincide with the 0 on each line and a given	arranged to coincide with the 0 on each line and	
point in the plane located by using an ordered	a given point in the plane located by using an	
pair of numbers, called its coordinates.	ordered pair of numbers, called its coordinates.	
Understand that the first number indicates how	Understand that the first number indicates how	
far to travel from the origin in the direction of	far to travel from the origin in the direction of	
one axis, and the second number indicates how	one axis, and the second number indicates how	
far to travel in the direction of the second axis,	far to travel in the direction of the second axis,	
with the convention that the names of the two	with the convention that the names of the two	
axes and the coordinates correspond (e.g., x -	axes and the coordinates correspond (e.g., x-axis	
axis and <i>x</i> -coordinate, <i>y</i> -axis and <i>y</i> -coordinate).	and x-coordinate, y-axis and y-coordinate).	
5.G.2. Represent real world and mathematical	5.G.A.2. Represent real world and mathematical	•
	problems by graphing points in the first quadrant	
of the coordinate plane, and interpret	of the coordinate plane, and interpret	
coordinate values of points in the context of the	coordinate values of points in the context of the	
situation.	situation.	
	B. Classify two-dimensional figures into	•
based on their properties.	categories based on their properties.	
5.G.3 Understand that attributes belonging to a	5.G.A.3. Understand that attributes belonging to	•
category of two-dimensional figures also belong	a category of two-dimensional figures also	
to all subcategories of that category. For	belong to all subcategories of that category. For	
example, all rectangles have four right angles	example, all rectangles have four right angles	
and squares are rectangles, so all squares have	and squares are rectangles, so all squares have	
four right angles.	four right angles.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
5.G.4. Classify two-dimensional figures in a	5.G.A.4. Classify two-dimensional figures in a	
hierarchy based on properties.	hierarchy based on properties.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
GRADE 6		
Ratios and Proportional Relationships		
Understand ratio concepts and use ratio	A. Understand ratio concepts and use ratio	
reasoning to solve problems.	reasoning to solve problems.	
6.RP.1. Understand the concept of a ratio and	6.RP.A.1. Understand the concept of a ratio and	
use ratio language to describe a ratio	use ratio language to describe a ratio	
relationship between two quantities. For	relationship between two quantities. For	
example, "The ratio of wings to beaks in the bird	example, "The ratio of wings to beaks in the bird	
house at the zoo was 2:1, because for every 2	house at the zoo was 2:1, because for every 2	
wings there was 1 beak." "For every vote	wings there was 1 beak." "For every vote	
candidate A received, candidate C received	candidate A received, candidate C received	
nearly three votes."	nearly three votes."	
6.RP.2. Understand the concept of a unit rate	6.RP.A.2. Understand the concept of a unit rate	•
a/b associated with a ratio $a:b$ with $b \neq 0$, and	a/b associated with a ratio a:b with b \neq 0 (b not	
use rate language in the context of a ratio	equal to zero), and use rate language in the	
relationship. For example, "This recipe has a	context of a ratio relationship. For example,	
ratio of 3 cups of flour to 4 cups of sugar, so	"This recipe has a ratio of 3 cups of flour to 4	
there is 3/4 cup of flour for each cup of sugar."	cups of sugar, so there is 3/4 cup of flour for	
"We paid \$75 for 15 hamburgers, which is a rate	each cup of sugar." "We paid \$75 for 15	
of \$5 per hamburger." [Expectations for unit	hamburgers, which is a rate of \$5 per	
rates in this grade are limited to non-complex	hamburger." (Note: Expectations for unit rates	
fractions.]	in this grade are limited to non-complex	
	fractions.)	
6.RP.3. Use ratio and rate reasoning to solve real-	6.RP.A.3. Use ratio and rate reasoning to solve	•
world and mathematical problems, e.g., by	real-world and mathematical problems, which	
reasoning about tables of equivalent ratios, tape	includes, by reasoning about tables of equivalent	
diagrams, double number line diagrams, or	ratios, tape diagrams, double number line	
equations.	diagrams, or equations.	
L		

CCSS/Current NYS	2018-19 NYS	Notes and Comments
6.RP.3a Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.	6.RP.A.3a. Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.	•
6.RP.3b Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?	6.RP.A.3b. Solve unit rate problems including those involving unit pricing and constant speed. For example, If it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?	•
6.RP.3c Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means 30/100 times the quantity); solve problems involving finding the whole, given a part and the percent.	6.RP.A.3c. Know that a percent of a quantity is a rate per 100. For example, 30% of a quantity means 30/100 times the quantity. Solve problems involving finding the whole given a part and the percent, finding the percent given the part and the whole, and finding a part of a whole given the percent.	NYS added finding the percent and finding a part, when given the other missing values in a problem involving percentages.

CCSS/Current NYS	2018-19 NYS	Notes and Comments
6.RP.3d Use ratio reasoning to convert	6.RP.A.3d. Use ratio reasoning to convert	NYS added a note for the teacher.
measurement units; manipulate and transform	measurement units; manipulate and transform	
units appropriately when multiplying or dividing	units appropriately when multiplying or dividing	[Consistency across the standards for how notes
quantities.	quantities.	are punctuated would be helpful. In this grade
	(Note: Conversion of units can occur within a	parentheses are used but not in earlier grades.]
	given measurement system and across different	
	measurement systems.)	
The Number System		
Apply and extend previous understandings of	A. Apply and extend previous understandings of	
multiplication and division to divide fractions	multiplication and division to divide fractions	
by fractions.	by fractions.	
6.NS.1. Interpret and compute quotients of	6.NS.A.1. Interpret and compute quotients of	
fractions, and solve word problems involving	fractions, and solve word problems involving	
division of fractions by fractions, e.g., by using	division of fractions by fractions, which includes	
visual fraction models and equations to	using visual fraction models, the standard	
represent the problem. <i>For example, create a</i>	algorithm, and equations to represent the	
story context for (2/3) ÷ (3/4) and use a visual	problem. For example, create a context for (2/3)	
fraction model to show the quotient; use the	÷ (3/4) and use a visual fraction model to show	
relationship between multiplication and division	the quotient; use the relationship between	
to explain that (2/3) ÷ (3/4) = 8/9 because 3/4 of	multiplication and division to explain that (2/3) \div	
8/9 is 2/3. (In general, (a/b) ÷ (c/d) = ad/bc.)	(3/4) = 8/9 because 3/4 of 8/9 is 2/3. How much	
How much chocolate will each person get if 3	chocolate will each person get if 3 people share	
people share 1/2 lb of chocolate equally? How	1/2 lb of chocolate equally? How many 3/4-cup	
many 3/4-cup servings are in 2/3 of a cup of	servings are in 2/3 of a cup of yogurt? How wide	
yogurt? How wide is a rectangular strip of land	is a rectangular strip of land with length 3/4 mi	
with length 3/4 mi and area 1/2 square mi?	and area 1/2 square mi? (In general, (a/b) ÷	
	(c/d) = ad/bc.)	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Compute fluently with multi-digit numbers and	B. Compute fluently with multi-digit numbers	
find common factors and multiples.	and find common factors and multiples.	
6.NS.2. Fluently divide multi-digit numbers using the standard algorithm.	6.NS.B.2. Fluently divide multi-digit numbers using the standard algorithm.	NYS added a note about limitations on fluency for this grade level to the third column but it is not part of the recommended standard. It is not clear whether or not this is intentional or an oversight.
6.NS.3. Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.	6.NS.B.3. Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.	NYS added a note about limitations on fluency for this grade level to the third column but it is not part of the recommended standard. It is not clear whether or not this is intentional or an oversight.
6.NS.4. Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12. Use the distributive property to express a sum of two whole numbers 1–100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express $36 + 8$ as 4 (9 + 2).	6.NS.B.4. Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12. Use the distributive property to express a sum of two whole numbers 1–100 with a common factor as a multiple of a sum of two whole numbers with no common factor. <i>For example, express 36 + 8</i> <i>as 4 (9 + 2).</i>	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Apply and extend previous understandings of	C. Apply and extend previous understandings of	
numbers to the system of rational numbers.	numbers to the system of rational numbers.	
6.NS.5. Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.	6.NS.C.5. Understand that positive and negative numbers are used together to describe quantities having opposite directions or values; use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation. For example, temperature above/below zero, elevation above/below sea level, debits/credits, positive/negative electric charge.	NYS moved the examples to the end of the standard.
6.NS.6. Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.	6.NS.C.6. Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.	•
6.NS.6a Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., $-(-3) = 3$, and that 0 is its own opposite.	6.NS.C.6a. Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself. For example, $-(-3) = 3$, and that 0 is its own opposite.	•

CCSS/Current NYS	2018-19 NYS	Notes and Comments
6.NS.6b Understand signs of numbers in ordered	6.NS.C.6b. Understand signs of numbers in	NYS added a clarification to ensure focus.
pairs as indicating locations in quadrants of the	ordered pairs as indicating locations in	
coordinate plane; recognize that when two	quadrants of the coordinate plane; recognize	
ordered pairs differ only by signs, the locations	that when two ordered pairs differ only by signs,	
of the points are related by reflections across	the locations of the points are related by	
one or both axes.	reflections across one or both axes. (Note: This	
	standard is not intended to be the beginning of	
	transformational geometry.)	
6.NS.6c Find and position integers and other	6.NS.C.6c. Find and position integers and other	•
rational numbers on a horizontal or vertical	rational numbers on a horizontal or vertical	
number line diagram; find and position pairs of	number line diagram; find and position pairs of	
integers and other rational numbers on a	integers and other rational numbers on a	
coordinate plane.	coordinate plane.	
6.NS.7. Understand ordering and absolute value	6.NS.C.7. Understand ordering and absolute	
of rational numbers.	value of rational numbers.	
6.NS.7a Interpret statements of inequality as	6.NS.C.7a. Interpret statements of inequality as	
statements about the relative position of two	statements about the relative position of two	
numbers on a number line diagram. For	numbers on a number line diagram. For	
example, interpret $-3 > -7$ as a statement that	example, interpret –3 > –7 as a statement that	
–3 is located to the right of –7 on a number line	–3 is located to the right of –7 on a number line	
oriented from left to right.	oriented from left to right .	
6.NS.7b Write, interpret, and explain statements	6.NS.C.7b. Write, interpret, and explain	•
of order for rational numbers in real-world	statements of order for rational numbers in real-	
contexts. <i>For example, write –3 oC > –7 oC to</i>	world contexts. For example, write –3°C > –7°C	
express the fact that -3 oC is warmer than -7 oC.	to express the fact that –3°C is warmer than	
	–7°C.	

6.NS.7c Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of -30 dollars. 6.NS.C.7c. Understand the absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of -30 dollars. write -30 = 30 to describe the size of the debt in dollars. 6.NS.C.7d. Distinguish comparisons of absolute value com balance of -30 dollars. 6.NS.7d Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -30 dollars. 6.NS.C.7d. Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -30 dollars. NYS added absolute value com balance of \$100 in their bank account has more money than someone with a balance of \$100, because 100 > -1000. But the second person's debt is much larger than the first person's credit because -1000 > 100 . NYS added absolute value com balance is from zero. comparing debts would make their bank account has more money than someone with a balance of \$100, because 100 > -1000. But the second person's debt is much larger than the first person's credit because -1000 > 100 . . 6.NS.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinate and absolute value to find distances between points with the same first coordinate or the same second coordinate. .	nents
number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of -30 dollars, write $ -30 = 30$ to describe the size of the debt in dollars.number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of -30 dollars, write $ -30 = 30$ to describe the size of the debt in dollars.NYS added absolute value con balance of -30 dollars, write $ -30 = 30$ to describe the size of the debt in dollars.6.NS.7d Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -30 dollars.6.NS.C.7d. Distinguish comparisons of absolute value from statements about order. For example, someone with a balance of 5100 in their bank account has more money than someone with a balance of $-$1000$, because $100 > -1000$. But the second person's debt is much larger than the first person's credit because $ -1000 > 100 $.NYS added absolute value con balances to the example. The confusing, however. Credit is 1 as a positively valued bank ba account balance is from zero. comparing debts would make wardnats of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.6.NS.C.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.6.NS.C.8	
magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of -30 dollars, write -30 = 30 to describe the size of the debt in dollars.magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of -30 dollars, write -30 = 30 to describe the size of the debt in dollars.NYS added absolute value com balances to the example. The confusing, however. Credit is u a positive or presents a debt greater than 30 dollars.NYS added absolute value com balances of \$100 in their bank account has more money than someone with a balance of -\$1000, beause 100> -1000. But the second person's debt is much larger than the first person's credit because [-1000] > [100].NYS added absolute value com balances to the example. The confusing, however. Credit is u as a positively valued bank ba account balance of \$100 in their bank account has more money than someone with a balance of -\$1000, because 100> -1000. But the second person's credit because [-1000].NYS added absolute value com balances to the example. The confusing, however. Credit is u as a positively valued bank ba account balance is from zero. comparing debts would make example is really trying to esta account balance is from zero. comparing debts would make example is really trying to esta account balance is from zero.6.NS.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate	
 a real-world situation. For example, for an account balance of -30 dollars, write -30 = 30 to describe the size of the debt in dollars. 6.NS.7d Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -30 dollars represents a debt greater than 30 dollars. 6.NS.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate. a real-world situation. For example, for an account balance of -30 dollars, write -30 = 30 to describe the size of the debt in dollars. NYS added absolute value com balances to the example. The example, recognize that an account balance less than -30 dollars. 6.NS.C.7d. Distinguish comparisons of absolute value from statements about order. For example, someone with a balance of \$100 in their bank account has more money than someone with a balance of -\$1000. But the second person's debt is much larger than the first person's credit because -1000 > 100 . 6.NS.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate. 	
account balance of -30 dollars, write -30 = 30 to describe the size of the debt in dollars.account balance of -30 dollars, write -30 = 30 to describe the size of the debt in dollars.6.NS.7d Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -30 dollars.6.NS.C.7d. Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -30 dollars.NYS added absolute value com balances to the example. The confusing, however. Credit is to as a positively valued bank ba someone with a balance of -\$1000, because 100 > -1000. But the second person's debt is much larger than the first person's credit because -1000 > 100 .NYS added absolute value com balances to the example. The confusing, however. Credit is to as a positively valued bank ba example is really trying to esta account balance is from zero. comparing debts would make example is really trying to esta account balance is from zero. comparing debts would make ecause -1000 > 100 .6.NS.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate	
to describe the size of the debt in dollars.to describe the size of the debt in dollars.6.NS.7d Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -30 dollars represents a debt greater than 30 dollars.6.NS.C.7d. Distinguish comparisons of absolute value from statements about order. For example, someone with a balance of \$100 in their bank account has more money than someone with a balance of -\$1000, because 100 > -1000. But the second person's debt is much larger than the first person's credit because -1000 > 100 .NYS added absolute value com balances to the example. The confusing, however. Credit is to as a positively valued bank bal account balance is from zero. comparing debts would make6.NS.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.6.NS.C.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinate or the same second coordinate.6.NS.C.8. Solve real-world and mathematical problems by graphing points with the same first coordinate or the same second coordinate.6.NS.C.8.	
6.NS.7d Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -30 dollars represents a debt greater than 30 dollars. 6.NS.C.7d. Distinguish comparisons of absolute value from statements about order. For example, someone with a balance of \$100 in their bank account has more money than someone with a balance of -\$1000, because 100 > -1000. But the second person's debt is much larger than the first person's credit because -1000 > 100 . NYS added absolute value com balances to the example. The confusing, however. Credit is in as a positively valued bank ba example is really trying to esta account balance is from zero. comparing debts would make because -1000 > 100 . 6.NS.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate. 6.NS.C.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate. .	
value from statements about order. For example, recognize that an account balance less than -30 dollars represents a debt greater than 30 dollars.value from statements about order. For example, someone with a balance of \$100 in their bank account has more money than someone with a balance of -\$1000, because 100 > -1000. But the second person's debt is much larger than the first person's credit because -1000 > 100 .balances to the example. The confusing, however. Credit is to as a positively valued bank balance example is really trying to estra account balance is from zero. comparing debts would make6.NS.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.6.NS.C.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinate or the same second coordinate	
example, recognize that an account balance less than -30 dollars represents a debt greater than 30 dollars.example, someone with a balance of \$100 in their bank account has more money than someone with a balance of -\$1000, because 100 > -1000. But the second person's debt is much larger than the first person's credit because -1000 > 100 .confusing, however. Credit is to as a positively valued bank bal example is really trying to esta account balance is from zero. comparing debts would make6.NS.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.6.NS.C.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use 	parison of bank
than -30 dollars represents a debt greater than 30 dollars.their bank account has more money than someone with a balance of -\$1000, because $100 > -1000$. But the second person's debt is much larger than the first person's credit because $ -1000 > 100 $.as a positively valued bank bal example is really trying to estr account balance is from zero. comparing debts would make6.NS.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.6.NS.C.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinate or the same second coordinate.6.NS.c.8 solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinate or the same second coordinate.6.NS.c.8 solve real-world and mathematical problems by graphing points with the same first coordinate or the same second coordinate.6.NS.c.8 solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinate or the same second coordinate.6.NS.c.8 solve real-world and mathematical problems by graphing points with the same first coordinate or the same second coordinate.6.NS.c.8 solve real-world and mathematical problems by graphing points with the same first coordinate or the same second coordinate.6.NS.c.8 solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinate or the same second coordinate.	new example is
30 dollars. someone with a balance of -\$1000, because 100 > -1000. But the second person's debt is much larger than the first person's credit because -1000 > 100 . example is really trying to esta account balance is from zero. comparing debts would make because -1000 > 100 . 6.NS.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate. 6.NS.C.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate. istances between points with the same first coordinate or the same second coordinate. istances between points with the same first coordinate or the same second coordinate.	ot the same thing
100 > -1000. But the second person's debt is much larger than the first person's credit because -1000 > 100 . account balance is from zero. comparing debts would make 6.NS.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate. 6.NS.C.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate. .	ance. Further, the
much larger than the first person's credit because -1000 > 100 .comparing debts would make6.NS.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.6.NS.C.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate	blish how far each
because [-1000] > [100].6.NS.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.6.NS.C.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.6.NS.C.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.	Perhaps
6.NS.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.6.NS.C.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.	more sense.
problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.	
quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.	
of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate. of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.	
distances between points with the same first coordinate or the same second coordinate.distances between points with the same first coordinate or the same second coordinate.	
coordinate or the same second coordinate. coordinate or the same second coordinate.	
Expressions and Equations .	
Apply and extend previous understandings of A. Apply and extend previous understandings of	
arithmetic to algebraic expressions. arithmetic to algebraic expressions.	
6.EE.1. Write and evaluate numerical 6.EE.A.1. Write and evaluate numerical .	
expressions involving whole-number exponents. expressions involving whole-number exponents.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
6.EE.2. Write, read, and evaluate expressions in	6.EE.A.2. Write, read, and evaluate expressions	
which letters stand for numbers.	in which letters stand for numbers.	
6.EE.2a Write expressions that record operations	6.EE.A.2a. Write expressions that record	
with numbers and with letters standing for	operations with numbers and with letters	
numbers. For example, express the calculation	standing for numbers. For example, express the	
"Subtract y from 5" as 5 – y.	calculation "Subtract y from 5" as 5 – y.	
6.EE.2b Identify parts of an expression using	6.EE.A.2b. Identify parts of an expression using	
mathematical terms (sum, term, product, factor,	mathematical terms (sum, term, product, factor,	
quotient, coefficient); view one or more parts of	quotient, and coefficient); view one or more	
an expression as a single entity. For example,	parts of an expression as a single entity. For	
describe the expression 2 (8 + 7) as a product of	example, describe the expression 2(8 + 7) as a	
two factors; view (8 + 7) as both a single entity	product of two factors; view (8 + 7) as both a	
and a sum of two terms.	single entity and a sum of two terms.	
6.EE.2c Evaluate expressions at specific values of	6.EE.A.2c. Evaluate expressions at specific values	
their variables. Include expressions that arise	for their variables. Include expressions that arise	
from formulas used in real-world problems.	from formulas in real-world problems. Perform	
Perform arithmetic operations, including those	arithmetic operations, including those involving	
involving whole- number exponents, in the	whole-number exponents, in the conventional	
conventional order when there are no	order when there are no parentheses to specify	
parentheses to specify a particular order (Order	a particular order (Order of Operations). For	
of Operations). For example, use the formulas V	example, use the formulas V = s^3 and A = 6 s^2	
= s^3 and A = 6 s^2 to find the volume and	to find the volume and surface area of a cube	
surface area of a cube with sides of length s =	with sides of length $s = 1/2$.	
1/2.		

80

CCSS/Current NYS	2018-19 NYS	Notes and Comments
6.EE.3. Apply the properties of operations to	6.EE.A.3. Apply the properties of operations to	
generate equivalent expressions. For example,	generate equivalent expressions. For example,	
apply the distributive property to the expression	apply the distributive property to the expression	
3 (2 + x) to produce the equivalent expression 6	<i>3(2 + x)</i> to produce the equivalent expression 6 +	
+ 3x; apply the distributive property to the	3x; apply the distributive property to the	
expression 24x + 18y to produce the equivalent	expression 24x + 18y to produce the equivalent	
expression 6 (4x + 3y); apply properties of	expression 6 (4x + 3y); apply properties of	
operations to y + y + y to produce the equivalent	operations to y + y + y to produce the equivalent	
expression 3y.	expression 3y.	
6.EE.4. Identify when two expressions are	6.EE.A.4. Identify when two expressions are	
equivalent (i.e., when the two expressions name	equivalent (i.e., when the two expressions name	
the same number regardless of which value is	the same number regardless of which value is	
substituted into them). <i>For example, the</i>	substituted into them). <i>For example, the</i>	
expressions $y + y + y$ and $3y$ are equivalent	expressions $y + y + y$ and $3y$ are equivalent	
because they name the same number regardless	because they name the same number regardless	
of which number y stands for.	of which number y stands for.	
Reason about and solve one-variable equations	B. Reason about and solve one-variable	
and inequalities.	equations and inequalities.	
6.EE.5. Understand solving an equation or	6.EE.B.5. Understand solving an equation or	•
inequality as a process of answering a question:	inequality as a process of answering a question:	
which values from a specified set, if any, make	which values from a specified set, if any, make	
the equation or inequality true? Use substitution	the equation or inequality true? Use substitution	
to determine whether a given number in a	to determine whether a given number in a	
specified set makes an equation or inequality	specified set makes an equation or inequality	
true.	true.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
6.EE.6. Use variables to represent numbers and	6.EE.B.6. Use variables to represent numbers	
write expressions when solving a real-world or	and write expressions when solving a real-world	
mathematical problem; understand that a	or mathematical problem; understand that a	
variable can represent an unknown number, or,	variable can represent an unknown number, or,	
depending on the purpose at hand, any number	depending on the purpose at hand, any number	
in a specified set.	in a specified set.	
6.EE.7. Solve real-world and mathematical problems by writing and solving equations of the form $x + p = q$ and $px = q$ for cases in which p , q and x are all nonnegative rational numbers.	6.EE.B.7. Solve real-world and mathematical problems by writing and solving equations of the form x + p = q and px = q for cases in which p, q and x are all nonnegative rational numbers and where x represents the unknown quantity. (Note: This standard includes subtraction and division, the inverse operations of addition and multiplication.)	NYS defined "x" as the representative of the unknown value, which should not be necessary. They also added a note to clarify the operations that are required, but the purpose of the note is unclear. What is meant by "the standard includes subtraction?" Is it that solving $x + p = q$ requires subtraction? Or is NY introducing $x - p =$ q to the forms? This should be made clear. In the case of division, care should be taken to provide a specific example, as it should be made clear that x/p is allowed but p/x is not.
6.EE.8. Write an inequality of the form $x > c$ or $x < c$ to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form $x > c$ or $x < c$ have infinitely many solutions; represent solutions of such inequalities on number line diagrams.	6.EE.B.8. Write an inequality of the form x > c or x < c to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form x > c or x < c have infinitely many solutions; represent solutions of such inequalities on number line diagrams. (Note: Inequalities using less than or equal to and greater than or equal to are included in this standard.)	NYS added a note to include inclusive inequalities.

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Represent and analyze quantitative	C. Represent and analyze quantitative	
relationships between dependent and	relationships between dependent and	
independent variables.	independent variables	
6.EE.9. Use variables to represent two quantities	6.EE.C.9. Use variables to represent two	The phrase, "given an equation to express one
in a real-world problem that change in	quantities in a real-world problem that change in	quantity, identify the dependent variable, in
relationship to one another; write an equation	relationship to one another; given an equation	terms of the other quantity, thought of as the
to express one quantity, thought of as the	to express one quantity, identify the dependent	independent variable," is difficult to decipher. In
dependent variable, in terms of the other	variable, in terms of the other quantity, thought	the CCSS the equation should clearly involve two
quantity, thought of as the independent	of as the independent variable. Analyze the	quantities. This is trickier to see in the NYS
variable. Analyze the relationship between the	relationship between the dependent and	version. In the CCSS, the students are to create
dependent and independent variables using	independent variables using graphs and tables,	the equation with one variable written in terms
graphs and tables, and relate these to the	and relate these to the equation. For example, in	of the other. In the NYS, the students are given
equation. For example, in a problem involving	a problem involving motion at constant speed,	the equation and are, seemingly, expected to
motion at constant speed, list and graph ordered	list and graph ordered pairs of distances and	only identify the dependent variable.
pairs of distances and times, and write the	times, and given the equation d = 65t to	
equation d = 65t to represent the relationship	represent the relationship between distance and	In addition, the phrase "an equation TO
between distance and time.	time.	express " should probably be "an equation
		THAT expressES"
	ļ	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Geometry		
Solve real-world and mathematical problems	A. Solve real-world and mathematical problems	
involving area, surface area, and volume.	involving area, surface area and volume.	
6.G.1. Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.	6.G.A.1. Find area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other special quadrilaterals; apply these techniques in the context of solving real- world and mathematical problems. Explore square numbers through area.	NYS added development of the concept of square numbers through a connection to area.
6.G.2. Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V = I w$ h and $V = b h$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.	6.G.A.2. Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V = I w$ h and $V = B$ h to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems. Explore cubic numbers through volume.	NYS changed the variable that represents the area of the base of a prism from lower to upper case and added a requirement to explore cubic numbers through volume. "Explore cubic number through volume" seems immeasurable and lacking specificity. Coherence: It is curious that this volume standard, which is closely tied to the area standard in Gr 5 (5.NF.4b) is not changed in the same way.

CCSS/Current NYS	2018-19 NYS	Notes and Comments
6.G.3. Draw polygons in the coordinate plane	6.G.A.3. Draw polygons in the coordinate plane	
given coordinates for the vertices; use	given coordinates for the vertices; use	
coordinates to find the length of a side joining	coordinates to find the length of a side joining	
points with the same first coordinate or the	points with the same first coordinate or the	
same second coordinate. Apply these techniques	same second coordinate. Apply these techniques	
in the context of solving real-world and	in the context of solving real-world and	
mathematical problems.	mathematical problems.	
6.G.4. Represent three-dimensional figures using	6.G.4. Represent three-dimensional figures using	
nets made up of rectangles and triangles, and	nets made up of rectangles and triangles, and	
use the nets to find the surface area of these	use the nets to find the surface area of these	
figures. Apply these techniques in the context of	figures. Apply these techniques in the context of	
solving real-world and mathematical problems.	solving real-world and mathematical problems.	
Statistics and Probability		
Develop understanding of statistical variability.	A. Develop understanding of statistical	
	variability.	
6.SP.1. Recognize a statistical question as one	6.SP.A.1. Recognize a statistical question as one	
that anticipates variability in the data related to	that anticipates variability in the data related to	
the question and accounts for it in the answers.	the question and accounts for it in the answers.	
For example, "How old am I?" is not a statistical	For example, "How old am I?" is not a statistical	
question, but "How old are the students in my	question, but "How old are the students in my	
school?" is a statistical question because one	school?" is a statistical question because one	
anticipates variability in students' ages.	anticipates variability in students' ages.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
6.SP.2. Understand that a set of data collected to	6.SP.A.2. Understand that a set of data collected	
answer a statistical question has a distribution	to answer a statistical question has a distribution	
which can be described by its center, spread,	which can be described by its center, spread,	
and overall shape.	and overall shape.	
6.SP.3. Recognize that a measure of center for a	6.SP.A.3. Recognize that a measure of center for	
numerical data set summarizes all of its values	a numerical data set summarizes all of its values	
with a single number, while a measure of	with a single number while a measure of	
variation describes how its values vary with a	variation describes how its values vary with a	
single number.	single number.	
Summarize and describe distributions.	B. Summarize and describe distributions.	
6.SP.4. Display numerical data in plots on a	6.SP.B.4. Display numerical data in plots on a	•
number line, including dot plots, histograms, and	number line, including dot plots, histograms, and	
box plots.	box plots.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
6.SP.5 Summarize numerical data sets in relation	6.SP.B.5. Summarize numerical data sets in	NYS left the colon at the end of this stem
to their context, such as by:	relation to their context, such as by:	statement but separated the sub parts into
a. Reporting the number of observations.		independent standards. This makes the stem
b. Describing the nature of the attribute under		grammatically incorrect and the sub parts do not
investigation, including how it was measured		describe a performance. In making this
and its units of measurement.		separation, NYS created separate standards for
c. Giving quantitative measures of center		each of the CCSS sub parts.
(median and/or mean) and variability	6.SP.B.5a. Reporting the number of observations.	Measurability: While this NYS matches the
(interquartile range and/or mean absolute		language of the sub part of the CCSS, making it a
deviation), as well as describing any overall		separate standard created one that does not
pattern and any striking deviations from the		describe a performance (missing a verb). This
overall pattern with reference to the context in		sub part needs the stem statement attached for
which the data were gathered.		it to make sense. If a teacher takes this
d. Relating the choice of measures of center and		separated standard out of the context of its
variability to the shape of the data distribution		stem statement, there is no way to know what
and the context in which the data were gathered.		student performance is required or how to
		measure it.
	6.SP.B.5b. Describing the nature of the attribute	Measurability: While this NYS matches the
	under investigation, including how it was	language of the sub part of the CCSS, making it a
	measured and its units of measurement.	separate standard created one that does not
		describe a performance (missing a verb). This
		sub part needs the stem statement attached for
		it to make sense. If a teacher takes this
		separated standard out of the context of its
		stem statement, there is no way to know what
		student performance is required or how to
		measure it.

CCSS/Current NYS	2018-19 NYS	Notes and Comments
	6.SP.B.5c. Giving quantitative measures of	Measurability: While this NYS matches the
	center (median and/or mean) and variability	language of the sub part of the CCSS, making it a
	(interquartile range and/or mean absolute	separate standard created one that does not
	deviation), as well as describing any overall	describe a performance (missing a verb). This
	pattern and any striking deviations from the	sub part needs the stem statement attached for
	overall pattern with reference to the context in	it to make sense. If a teacher takes this
	which the data was gathered.	separated standard out of the context of its
		stem statement, there is no way to know what
		student performance is required or how to
		measure it.
	6.SP.B.5d. Understanding that the choice of	Measurability: While this NYS matches the
	measures of center and variability relates to the	language of the sub part of the CCSS, making it a
	shape of the data distribution and the context in	separate standard created one that does not
	which the data was gathered.	describe a performance (missing a verb). This
		sub part needs the stem statement attached for
		it to make sense. If a teacher takes this
		separated standard out of the context of its
		stem statement, there is no way to know what
		student performance is required or how to
		measure it.

88

CCSS/Current NYS	2018-19 NYS	Notes and Comments
GRADE 7		
Ratios and Proportional Relationships		
Analyze proportional relationships and use	A. Analyze proportional relationships and use	
them to solve real-world and mathematical	them to solve real-world problems.	
problems.		
7.RP.1. Compute unit rates associated with	7.RP.A.1. Compute unit rates associated with	NYS added parentheses to make the complex
ratios of fractions, including ratios of lengths,	ratios of fractions, including ratios of lengths,	fraction more clear and defines 2 as a unit rate.
areas and other quantities measured in like or	areas and other quantities measured in like or	
different units. For example, if a person walks	different units. For example, if a person walks	
1/2 mile in each 1/4 hour, compute the unit rate	1/2 mile in each 1/4 hour, compute the rate as	
as the complex fraction 1/2/1/4 miles per hour,	the complex fraction (1/2)/(1/4) miles per hour,	
equivalently 2 miles per hour.	equivalently 2 miles per hour with 2 being the	
	unit rate.	
7.RP.2. Recognize and represent proportional	7.RP.A.2. Recognize and represent proportional	
relationships between quantities.	relationships between quantities.	
7.RP.2a Decide whether two quantities are in a	7.RP.A.2a. Decide whether two quantities are in	NYS changed "table or graph" to "table
proportional relationship, e.g., by testing for	a proportional relationship, which includes	and graph," presumably to ensure that both
equivalent ratios in a table or graphing on a	testing for equivalent ratios in a table and	are addressed.
coordinate plane and observing whether the	graphing on a coordinate plane and observing	
graph is a straight line through the origin.	whether the graph is a straight line through the	
	origin.	
7.RP.2b Identify the constant of proportionality	7.RP.A.2b. Identify the constant of	
(unit rate) in tables, graphs, equations, diagrams,	proportionality (unit rate) in tables, graphs,	
and verbal descriptions of proportional	equations, diagrams, and verbal descriptions of	
relationships.	proportional relationships.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
7.RP.2c Represent proportional relationships by	7.RP.A.2c. Represent proportional relationships	
equations. For example, if total cost t is	by equations. For example, if total cost t is	
proportional to the number n of items purchased	proportional to the number n of items	
at a constant price p, the relationship between	purchased at a constant price p, the relationship	
the total cost and the number of items can be	between the total cost and the number of items	
expressed as t = pn .	can be expressed as t = pn.	
7.RP.2d Explain what a point (x, y) on the graph	7.RP.A.2d. Explain what a point (x, y) on the	
of a proportional relationship means in terms of	graph of a proportional relationship means in	
the situation, with special attention to the points	terms of the situation, with special attention to	
(0, 0) and $(1, r)$ where r is the unit rate.	the points (0, 0) and (1, r) where r is the unit rate.	
7.RP.3. Use proportional relationships to solve	7.RP.A.3. Use proportional relationships to solve	NYS removed "percent error."
multistep ratio and percent problems.	multistep ratio and percent problems which	wishemoved percenterior.
<i>Examples:</i> simple interest, tax, markups and	includes simple interest, tax, markups and	
markdowns, gratuities and commissions, fees,	markdowns, gratuities and commissions, fees,	
percent increase and decrease, percent error.	percent increase and decrease.	
The Number System		•
Apply and extend previous understandings of	A. Apply and extend previous understandings of	
operations with fractions to add, subtract,	operations with fractions to add, subtract,	
multiply, and divide rational numbers.	multiply, and divide rational numbers.	
7.NS.1. Apply and extend previous	7.NS.A.1. Apply and extend previous	
understandings of addition and subtraction to	understandings of addition and subtraction to	
add and subtract rational numbers; represent	add and subtract rational numbers; represent	
addition and subtraction on a horizontal or	addition and subtraction on a horizontal or	
vertical number line diagram.	vertical number line diagram.	
vertical number mie ulagram.		

CCSS/Current NYS	2018-19 NYS	Notes and Comments
7.NS.1a Describe situations in which opposite quantities combine to make 0. For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged. 7.NS.1b Understand $p + q$ as the number located a distance $ q $ from p , in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.	 7.NS.A.1a. Describe situations in which opposite quantities combine to make 0. For example, a hydrogen atom has 0 charge because it has one negatively charged electron and one positively charged proton. 7.NS.A.1b. Understand p + q as the number located a distance q from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts. <i>Examples: If a football player gains 5 yards on the first play and loses 5 yards on the second play, the player has gained 0 yards. A bird flying 5 feet above the surface of the water and descends 6.5 feet (-6.5) to catch the fish. The fish was 1.5 feet below (-1.5) the surface of the water (sum of +5 and -6.5).</i> 	NYS added more detail to the science example. NYS added examples.
7.NS.1c Understand subtraction of rational numbers as adding the additive inverse, $p - q = p + (-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.	7.NS.A.1c. Understand subtraction of rational numbers as adding the additive inverse, $p - q = p + (-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
7.NS.1d Apply properties of operations as	7.NS.A.1d. Apply properties of operations as	
strategies to add and subtract rational numbers.	strategies to add and subtract rational numbers.	
7.NS.2. Apply and extend previous	7.NS.A.2. Apply and extend previous	
understandings of multiplication and division	understandings of multiplication and division	
and of fractions to multiply and divide rational	and of fractions to multiply and divide rational	
numbers.	numbers.	
7.NS.2a Understand that multiplication is	7.NS.A.2a. Understand that multiplication is	•
extended from fractions to rational numbers by	extended from fractions to rational numbers by	
requiring that operations continue to satisfy the	requiring that operations continue to satisfy the	
properties of operations, particularly the	properties of operations, particularly the	
distributive property, leading to products such as	distributive property, leading to products such as	
(-1)(-1) = 1 and the rules for multiplying signed	(-1)(-1) = 1 and the rules for multiplying signed	
numbers. Interpret products of rational numbers	numbers. Interpret products of rational numbers	
by describing real-world contexts.	by describing real-world contexts.	
7.NS.2b Understand that integers can be divided,	7.NS.A.2b. Understand that integers can be	
provided that the divisor is not zero, and every	divided, provided that the divisor is not zero,	
quotient of integers (with non-zero divisor) is a	and every quotient of integers (with non-zero	
rational number. If p and q are integers, then	divisor) is a rational number. If p and q are	
-(p/q) = (-p)/q = p/(-q). Interpret quotients of	integers then $-(p/q) = (-p)/q = p/(-q)$. Interpret	
rational numbers by describing real- world	quotients of rational numbers by describing real-	
contexts.	world contexts.	
7.NS.2c Apply properties of operations as	7.NS.A.2c. Apply properties of operations as	
strategies to multiply and divide rational	strategies to multiply and divide rational	
numbers.	numbers.	
7.NS.2d Convert a rational number to a decimal	NS.A.2d. Convert a rational number to a decimal	
using long division; know that the decimal form	using long division; know that the decimal form	
of a rational number terminates in 0s or	of a rational number terminates in 0s or	
eventually repeats.	eventually repeats.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
7.NS.3. Solve real-world and mathematical	7.NS.A.3. Solve real-world and mathematical	
problems involving the four operations with	problems involving the four operations with	
rational numbers. [Comuptations with rational	rational numbers. (Note: Computations with	
numbers extend the rules for manipulating	rational numbers extend the rules for	
fractions to complex fractions.]	manipulating fractions to complex fractions.)	
Expressions and Equations		
Use properties of operations to generate	A. Use properties of operations to generate	
equivalent expressions.	equivalent expressions.	
7.EE.1. Apply properties of operations as	7.EE.A.1. Apply properties of operations as	
strategies to add, subtract, factor, and expand	strategies to add, subtract, factor, and expand	
linear expressions with rational coefficients.	linear expressions with rational coefficients.	
7.EE.2. Understand that rewriting an expression	7.EE.A.2. Understand that rewriting an	
in different forms in a problem context can shed	expression in different forms in a problem	
light on the problem and how the quantities in it	context can shed light on the problem and how	
are related. For example, $a + 0.05a = 1.05a$	the quantities in it are related. For example, a +	
means that "increase by 5%" is the same as	0.05a and 1.05a are equivalent expressions	
"multiply by 1.05."	meaning that "increase by 5%" is the same as	
	"multiply by 1.05."	
Solve real-life and mathematical problems	B. Solve real-life and mathematical problems	
using numerical and algebraic expressions and	using numerical and algebraic expressions and	
equations.	equations (inequalities).	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
7.EE.3. Solve multi-step real-life and	7.EE.B.3. Solve multi-step real-life and	NYS changed the strategic use of tools to
mathematical problems posed with positive and	mathematical problems posed with positive and	"mathematically appropriate strategies."
negative rational numbers in any form (whole	negative rational numbers in any form (whole	
numbers, fractions, and decimals), using tools	numbers, fractions, and decimals), using	
strategically. Apply properties of operations to	mathematically appropriate strategies. Apply	
calculate with numbers in any form; convert	properties of operations as strategies to	
between forms as appropriate; and assess the	calculate with numbers in any form; convert	
reasonableness of answers using mental	between forms as appropriate; and assess the	
computation and estimation strategies. For	reasonableness of answers using mental	
example: If a woman making \$25 an hour gets a	computation and estimation strategies. For	
10% raise, she will make an additional 1/10 of	example: If a woman making \$25 an hour gets a	
her salary an hour, or \$2.50, for a new salary of	10% raise, she will make an additional 1/10 of	
\$27.50. If you want to place a towel bar 9 3/4	her salary an hour, or \$2.50, for a new salary of	
inches long in the center of a door that is 27 1/2	\$27.50. If you want to place a towel bar 9 3/4	
inches wide, you will need to place the bar about	inches long in the center of a door that is 27 1/2	
9 inches from each edge; this estimate can be	inches wide, you will need to place the bar about	
used as a check on the exact computation.	9 inches from each edge; this estimate can be	
	used as a check on the exact computation.	
7.EE.4. Use variables to represent quantities in a	7.EE.B.4. Use variables to represent quantities in	
real-world or mathematical problem, and	a real-world or mathematical problem, and	
construct simple equations and inequalities to	construct simple equations and inequalities to	
solve problems by reasoning about the	solve problems by reasoning about the	
quantities.	quantities.	

2018-19 NYS	Notes and Comments
7.EE.B.4a. Fluently solve word problems leading	NYS added a fluency requirement for word
to equations of the form $px + q = r$ and $p(x + q) =$	problems leading to simple linear equations.
r, where p, q, and r are rational numbers and x	
represents the unknown quantity. Compare an	
algebraic solution to an arithmetic solution,	
identifying the sequence of the operations used	
in each approach. For example, The perimeter of	
a rectangle is 54 cm. Its length is 6 cm. What is	
its width?	
7.EE.B.4b. Solve word problems leading to	NYS added a note about inclusive inequalities to
inequalities of the form $px + q > r$ or $px + q < r$,	this requirement.
where p, q, and r are rational numbers and x	
represents the unknown quantity. Graph the	
solution set of the inequality and interpret it in	
the context of the problem. <i>For example, As a</i>	
salesperson, you are paid \$50 per week plus \$3	
per sale. This week you want your pay to be at	
least \$100. Write an inequality for the number	
of sales you need to make, and describe the	
solutions. (Note: Inequalities using less than or	
equal to and greater than or equal to are	
included in this standard.)	
	7.EE.B.4a. Fluently solve word problems leading to equations of the form $px + q = r$ and $p(x + q) = r$, where p, q, and r are rational numbers and x represents the unknown quantity. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, The perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width? 7.EE.B.4b. Solve word problems leading to inequalities of the form $px + q > r$ or $px + q < r$, where p, q, and r are rational numbers and x represents the unknown quantity. Graph the solution set of the inequality and interpret it in the context of the problem. For example, As a salesperson, you are paid \$50 per week plus \$3 per sale. This week you want your pay to be at least \$100. Write an inequality for the number of sales you need to make, and describe the solutions. (Note: Inequalities using less than or equal to and greater than or equal to are

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Geometry		
Draw, construct, and describe geometrical	A. Draw, construct and describe geometrical	
figures and describe the relationships between	figures and describe the relationships between	
them.	them.	
7.G.1. Solve problems involving scale drawings	7.G.A.1. Solve problems involving scale drawings	
of geometric figures, including computing actual	of geometric figures, including computing actual	
lengths and areas from a scale drawing and	lengths and areas from a scale drawing and	
reproducing a scale drawing at a different scale.	reproducing a scale drawing at a different scale.	
7.G.2. Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.	7.G.A.2. Explore geometric shapes through the use of freehand drawings, rulers, protractors, and/or technology. Focus on constructing triangles with given conditions from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.	NYS added the idea of exploring shapes, possibly through the use of drawings, but does not specifically require that students draw figures. They changed the performance for this standard to "explore." It is not clear in the glossary of verbs whether this is an even exchange in terms of rigor.
7.G.3. Describe the two-dimensional figures that result from slicing three- dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.	7.G.A.3. Explore and describe the two- dimensional figures that result from slicing three- dimensional figures parallel or perpendicular to a base, as in plane sections of right rectangular prisms and right rectangular pyramids.	NYS limits the sections to those that are parallel or perpendicular to the base.

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Solve real-life and mathematical problems	B. Solve real-life and mathematical problems	
involving angle measure, area, surface area,	involving angle measure, area, surface area and	
and volume.	volume.	
7.G.4. Know the formulas for the area and	7.G.B.4. Use the formulas for the area and	NYS changed from "know" to "use," making it
circumference of a circle and use them to solve	circumference of a circle to solve problems; give	clear that students would be given the formulas.
problems; give an informal derivation of the	an informal derivation of the relationship	
relationship between the circumference and	between the circumference and area of a circle.	
area of a circle.	(Note: Calculating the radius of a circle given its	
	area is not expected.)	
7.G.5. Use facts about supplementary,	7.G.B.5. Use facts about supplementary,	
complementary, vertical, and adjacent angles in	complementary, vertical, and adjacent angles in	
a multi-step problem to write and solve simple	a multi-step problem to write and solve simple	
equations for an unknown angle in a figure.	equations for an unknown angle in a figure.	
7.G.6. Solve real-world and mathematical	7.G.B.6. Solve real-world and mathematical	NYS limited their version to special
problems involving area, volume and surface	problems involving area, volume and surface	quadrilaterals and removed the general category
area of two- and three-dimensional objects	area of two- and three-dimensional objects	of "polygons" from the list of required shapes. A
composed of triangles, quadrilaterals, polygons,	composed of triangles, special quadrilaterals,	definition for "special quadrilaterals" may be
cubes, and right prisms.	cubes, and right rectangular prisms.	needed. For example, would kites and trapezoids
		be included?
		NYS also added "rectangular" to right prisms. In
		the CCSS for Gr 5 and Gr 6, prisms are restricted
		to "right rectangular," but Gr 7 expands to
		"three-dimensional objects composed of
		triangles, quadrilaterals, polygons, cubes and
		right prisms."
Statistics and Probability		

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Use random sampling to draw inferences about	A. Use random sampling to draw inferences	
a population.	about a population.	
7.SP.1. Understand that statistics can be used to	7.SP.A.1. Understand that statistics can be used	
gain information about a population by	to gain information about a population by	
examining a sample of the population;	examining a sample of the population;	
generalizations about a population from a	generalizations about a population from a	
sample are valid only if the sample is	sample are valid only if the sample is	
representative of that population. Understand	representative of that population. Understand	
that random sampling tends to produce	that random sampling tends to produce	
representative samples and support valid	representative samples and support valid	
inferences.	inferences.	
7.SP.2. Use data from a random sample to draw	7.SP.A.2. Use data from a random sample to	•
inferences about a population with an unknown	draw inferences about a population with an	
characteristic of interest. Generate multiple	unknown characteristic of interest. Generate	
samples (or simulated samples) of the same size	multiple samples (or simulated samples) of the	
to gauge the variation in estimates or	same size to evaluate the variation in estimates	
predictions. For example, estimate the mean	or predictions. For example, estimate the mean	
word length in a book by randomly sampling	word length in a book by randomly sampling	
words from the book; predict the winner of a	words from the book; predict the winner of a	
school election based on randomly sampled	school election based on randomly sampled	
survey data. Gauge how far off the estimate or	survey data. Evaluate how far off the estimate	
prediction might be.	or prediction might be.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Draw informal comparative inferences about	B. Draw informal comparative inferences about	
two populations.	two populations.	
7.SP.3. Informally assess the degree of visual	7.SP.B.3. Informally assess the degree of visual	
overlap of two numerical data distributions with	overlap of two numerical data distributions with	
similar variabilities, measuring the difference	similar variabilities, measuring the difference	
between the centers by expressing it as a	between the centers by expressing it as a	
multiple of a measure of variability. For	multiple of a measure of variability. For	
example, the mean height of players on the	example, the mean height of players on the	
basketball team is 10 cm greater than the mean	basketball team is 10 cm greater than the mean	
height of players on the soccer team, about	height of players on the soccer team, about	
twice the variability (mean absolute deviation)	twice the variability (mean absolute deviation)	
on either team; on a dot plot, the separation	on either team; on a dot plot, the separation	
between the two distributions of heights is	between the two distributions of heights is	
noticeable .	noticeable.	
7.SP.4. Use measures of center and measures of	7.SP.B.4. Use measures of center and measures	
variability for numerical data from random	of variability for numerical data from random	
samples to draw informal comparative	samples to draw informal comparative	
inferences about two populations. For example,	inferences about two populations. For example,	
decide whether the words in a chapter of a	decide whether the words in a chapter of a	
seventh-grade science book are generally longer	seventh-grade science book are generally longer	
than the words in a chapter of a fourth-grade	than the words in a chapter of a fourth-grade	
science book.	science book.	
Investigate chance processes and develop, use,	C. Investigate chance processes and develop,	
and evaluate probability models.	use and evaluate probability models.	

chance event is a number between 0 and 1 that	chance event is a number between 0 and 1	NYS clarified that both 0 and 1 are included in
		the possible values for the probabilities. (Typo:
expresses the likelihood of the event occurring.	inclusive that expresses the likelihood of the	Inclusive should be within commas.)
arger numbers indicate greater likelihood. A	event occurring. Larger numbers indicate greater	
probability near 0 indicates an unlikely event, a	likelihood. A probability near 0 indicates an	
probability around 1/2 indicates an event that is	unlikely event, a probability around 1/2 indicates	
neither unlikely nor likely, and a probability near	an event that is neither unlikely nor likely, and a	
L indicates a likely event.	probability near 1 indicates a likely event.	
7.SP.6. Approximate the probability of a chance	7.SP.C.6. Approximate the probability of a	
event by collecting data on the chance process	chance event by collecting data on the chance	
hat produces it and observing its long-run	process that produces it and observing its long-	
relative frequency, and predict the approximate	run relative frequency, and predict the	
elative frequency given the probability. For	approximate relative frequency given the	
example, when rolling a number cube 600 times,	probability. For example, when rolling a number	
predict that a 3 or 6 would be rolled roughly 200	cube 600 times, predict that a 3 or 6 would be	
imes, but probably not exactly 200 times.	rolled roughly 200 times, but probably not	
e	exactly 200 times.	
7.SP.7. Develop a probability model and use it to	7.SP.C.7. Develop a probability model and use it	
ind probabilities of events. Compare	to find probabilities of events. Compare	
	probabilities from a model to observed	
requencies; if the agreement is not good, f	frequencies; if the agreement is not good,	
	explain possible sources of the discrepancy.	
	,	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
7.SP.7a Develop a uniform probability model by	7.SP.C.7a. Develop a uniform probability model	NYS changed the example.
assigning equal probability to all outcomes, and	by assigning equal probability to all outcomes,	
use the model to determine probabilities of	and use the model to determine probabilities of	
events. For example, if a student is selected at	events. For example, the probability of rolling a	
random from a class, find the probability that	fair number cube and landing on a 2 is 1/6. The	
Jane will be selected and the probability that a	probability of landing on an even number is also	
girl will be selected.	3/6.	
7.SP.7b Develop a probability model (which may	7.SP.C.7b. Develop a probability model (which	
not be uniform) by observing frequencies in data	may not be uniform) by observing frequencies in	
generated from a chance process. For example,	data generated from a chance process. For	
find the approximate probability that a spinning	example, find the approximate probability that a	
penny will land heads up or that a tossed paper	spinning penny will land heads up or that a	
cup will land open-end down. Do the outcomes	tossed paper cup will land open-end down. Do	
for the spinning penny appear to be equally	the outcomes for the spinning penny appear to	
likely based on the observed frequencies?	be equally likely based on the observed	
	frequencies?	
7.SP.8. Find probabilities of compound events	7.SP.C.8. Find probabilities of compound events	
using organized lists, tables, tree diagrams, and	using organized lists, tables, tree diagrams, and	
simulation.	simulation.	
7.SP.8a Understand that, just as with simple	7.SP.C.8a. Understand that, just as with simple	
events, the probability of a compound event is	events, the probability of a compound event is	
the fraction of outcomes in the sample space for	the fraction of outcomes in the sample space for	
which the compound event occurs.	which the compound event occurs.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
7.SP.8b Represent sample spaces for compound	7.SP.C.8b. Represent sample spaces for	NYS moved the example to the end of the
events using methods such as organized lists,	compound events using methods such as	standard.
tables and tree diagrams. For an event described	organized lists, tables and tree diagrams. For an	
in everyday language <mark>(e.g.,</mark> "rolling double	event described in everyday language, identify	[Typo: The period is outside the end quotes at
sixes"), identify the outcomes in the sample	the outcomes in the sample space which	the end of the sentence.]
space which compose the event.	compose the event. <i>For example, "rolling</i>	
	double sixes".	
7.SP.8c Design and use a simulation to generate	7.SP.C.8c. Design and use a simulation to	
frequencies for compound events. For example,	generate frequencies for compound events. For	
use random digits as a simulation tool to	example, use random digits as a simulation tool	
approximate the answer to the question: If 40%	to approximate the answer to the question: If	
of donors have type A blood, what is the	40% of donors have type A blood, what is the	
probability that it will take at least 4 donors to	probability that it will take at least 4 donors to	
find one with type A blood?	find one with type A blood?	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
GRADE 8		
The Number System		
Know that there are numbers that are not	A. Know that there are numbers that are not	
rational, and approximate them by rational	rational and approximate them by rational	
numbers.	numbers.	
8.NS.1. Know that numbers that are not rational	8.NS.A.1. Understand informally that every	NYS removed the requirement to convert
are called irrational. Understand informally that	number has a decimal expansion; the rational	repeating decimals into rational numbers. They
every number has a decimal expansion; for	numbers are those with decimal expansions that	changed other wording slightly and moved the
rational numbers show that the decimal	terminate in 0s or eventually repeat. Know that	first statement in the CCSS to the end of the
expansion repeats eventually, and convert a	other numbers are called irrational.	standard.
decimal expansion which repeats eventually into		
a rational number.		
8.NS.2. Use rational approximations of irrational	8.NS.A.2. Use rational approximations of	NYS specifically included π^2 as a value that
numbers to compare the size of irrational	irrational numbers to compare the size of	must be estimated. It is not clear why this value
numbers, locate them approximately on a	irrational numbers, locate them approximately	is singled out, especially when it has no
number line diagram, and estimate the value of	on a number line diagram, and estimate the	connection to the example.
expressions <mark>(e.g., √2)</mark> . For example, by	value of expressions, which includes, π^2 . For	
truncating the decimal expansion of $V2$, show	example, by truncating the decimal expansion of	
that v2 is between 1 and 2, then between 1.4	$\sqrt{2}$ (square root of 2), show that $\sqrt{2}$ is between 1	
and 1.5, and explain how to continue on to get	and 2, then between 1.4 and 1.5, and explain	
better approximations.	how to continue on to get better	
	approximations.	
Expressions and Equations		•
Work with radicals and integer exponents.	A. Work with radicals and integer exponents.	•
8.EE.1. Know and apply the properties of integer	8.EE.A.1. Know and apply the properties of	•
exponents to generate equivalent numerical	integer exponents to generate equivalent	
expressions. For example, $3^{2} \times 3^{(-5)} = 3^{(-3)}$	numerical expressions. For example, 3^2 ×	
)= 1/3^3 = 1/27.	3^(-5) = 3^(-3) =1/(3^3)= 1/27.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
8.EE.2. Use square root and cube root symbols	8.EE.A.2. Use square root and cube root symbols	NYS used specific limitations rather than "small,"
to represent solutions to equations of the form	to represent solutions to equations of the form	which is used in the CCSS. They also included a
$x^2 = p$ and $x^3 = p$, where p is a positive	$x^2 = p$ and $x^3 = p$, where p is a positive	more general statement about irrational
rational number. Evaluate square roots of small	rational number. Know square roots of perfect	numbers and put the specific one used in the
perfect squares and cube roots of small perfect	squares up to 225 and cube roots of perfect	CCSS in an example.
cubes. Know that √2 is irrational.	cubes up to 125. Know that the square root of a	
	non-perfect square is irrational. For example,	
	the √2 is irrational.	
8.EE.3. Use numbers expressed in the form of a	8.EE.A.3. Use numbers expressed in the form of	•
single digit times an integer power of 10 to	a single digit times an integer power of 10 to	
estimate very large or very small quantities, and	estimate very large or very small quantities, and	
to express how many times as much one is than	to express how many times as much one is than	
the other. For example, estimate the population	the other. For example, estimate the population	
of the United States as 3 $ imes$ 10^8 and the	of the United States as 3 × 108 and the	
population of the world as 7×10^{9} , and	population of the world as 7 $ imes$ 109, and	
determine that the world population is more	determine that the world population is more	
than 20 times larger.	than 20 times larger.	
8.EE.4. Perform operations with numbers	8.EE.A4. Perform operations with numbers	NYS changed "decimal" to "standard decimal
expressed in scientific notation, including	expressed in scientific notation, including	form" and removed the example.
problems where both decimal and scientific	problems where both standard decimal form	
notation are used. Use scientific notation and	and scientific notation are used. Use scientific	
choose units of appropriate size for	notation and choose units of appropriate size for	
measurements of very large or very small	measurements of very large or very small	
quantities (e.g., use millimeters per year for	quantities. Interpret scientific notation that has	
seafloor spreading). Interpret scientific notation	been generated by technology.	
that has been generated by technology.		

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Understand the connections between	B. Understand the connections between	
proportional relationships, lines, and linear	proportional relationships, lines and linear	
equations.	equations.	
8.EE.5. Graph proportional relationships,	8.EE.B.5. Graph proportional relationships,	
interpreting the unit rate as the slope of the	interpreting the unit rate as the slope of the	
graph. Compare two different proportional	graph. Compare two different proportional	
relationships represented in different ways. For	relationships represented in different ways. For	
example, compare a distance-time graph to a	example, compare a distance-time graph to a	
distance-time equation to determine which of	distance-time equation to determine which of	
two moving objects has greater speed.	two moving objects has greater speed.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
8.EE.6. Use similar triangles to explain why the	8.EE.B.6. Derive the equation y = mx for a line	NYS changed the order of the statements and
slope m is the same between any two distinct	through the origin and the equation y = mx + b	changed "use" to "explore." In this case simply
points on a non-vertical line in the coordinate	for a line intercepting the vertical axis at b.	replacing "use" with "explore" is awkward. Is it
plane; derive the equation $y = mx$ for a line	Explore similar triangles to explain why the slope	possible to "explore to explain why?" Perhaps
through the origin and the equation $y = mx + b$	m is the same between any two distinct points	it should be, "explore and explain why." This
for a line intercepting the vertical axis at b.	on a non-vertical line in the coordinate plane.	ordering also changed the emphasis of the
		progression that existed in the earlier standards.
		The point of the existing standard was to use the
		earlier work on similarity, connect it to slope,
		and proceed to the form y = mx + b. This
		development is outlined in the progressions
		documents and also reflects the emphasis of the
		cluster to connect linear equations to
		proportional relationships. The note indicates
		the goal is to emphasize the connection to
		proportional relationships, but the re-phrasing
		will likely have the opposite impact.
		Also: "Explore similar triangles," given the
		glossary definition of "explore" does not make
		sense here, as students have already learned
		about similar triangles in Grade 7.

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Analyze and solve linear equations and pairs of	C. Analyze and solve linear equations and pairs	
simultaneous linear equations.	of simultaneous linear equations.	
8.EE.7. Solve linear equations in one variable.	8.EE.C.7. Solve linear equations in one variable.	•
	8.EE.C.7a. Give examples of linear equations in	
variable with one solution, infinitely many	one variable with one solution, infinitely many	
solutions, or no solutions. Show which of these	solutions, or no solutions. Show which of these	
possibilities is the case by successively	possibilities is the case by successively	
transforming the given equation into simpler	transforming the given equation into simpler	
forms, until an equivalent equation of the form x	forms, until an equivalent equation of the form x	
= a, a = a, or a = b results (where a and b are	= a, a = a, or a = b results (where a and b are	
different numbers).	different numbers).	
8.EE.7b Solve linear equations with rational	8.EE.C.7b. Solve linear equations with rational	NYS added a further explanation of this
number coefficients, including equations whose	number coefficients, including equations whose	requirement.
solutions require expanding expressions using	solutions require expanding expressions using	
the distributive property and collecting like	the distributive property and combining like	
terms.	terms. This includes equations that contain	
	variables on both sides of the equation.	
8.EE.8. Analyze and solve pairs of simultaneous	8.EE.C.8. Analyze and solve pairs of simultaneous	
linear equations.	linear equations.	
8.EE.8a Understand that solutions to a system of	8.EE.C.8a. Understand that solutions to a system	
two linear equations in two variables correspond	of two linear equations in two variables	
to points of intersection of their graphs, because	correspond to points of intersection of their	
points of intersection satisfy both equations	graphs, because points of intersection satisfy	
simultaneously.	both equations simultaneously.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
 8.EE.8b Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, 3x + 2y = 5 and 3x + 2y = 6 have no solution because 3x + 2y cannot simultaneously be 5 and 6. 	 8.EE.C.8b. Solve systems of two linear equations in two variables with integral coefficients: graphically, numerically using a table, and algebraically by substitution. Note: Solving systems algebraically by substitution will be limited to at least one equation containing at least one variable whose coefficient is 1. Solve simple cases by inspection fluently. For example, 3x + 2y = 5 and 3x + 2y = 6 have no solution because 3x + 2y cannot simultaneously be 5 and 6. 	NYS added a fluency requirement. They also limited this standard by requiring "integral coefficients," with at least one being 1 for those solved algebraically, and substitution as the only algebraic method. (In this case it is not clear why "integral" was used rather than "integer," which would better match the terms in cluster 8.EE.A.) This is a shift in focus. NYS expects students to be able to solve a system of linear equations numerically using a table, and algebraically, limited to substitution. Substitution questions are further limited to one variable with a coefficient of one. It is not clear, however, what limitations would be placed on the precision of answers for tables or graphs. Would students be expected to find the solution to [7x - 13y = 42, -12x + 23y = 14] both graphically and by a table? (The answer, now, is yes). The CCSS expects students to estimate solutions using graphs, NYS does not, and does not expect such a problem to be solved in a table. The CCSS does not limit algebra approaches to substitution nor to coefficients of 1. It is interesting that NYS did not replace the example with one that includes at least one coefficient of 1, especially since the example given would be a good one for solving by combining the two equations. ($3x + 2y = 5$ combined with $-3x + -2y = -6$ produces $0 = -1$, which cannot not be true for any values of x and y.) Fluency, as defined here, will be very challenging to measure.

CCSS/Current NYS	2018-19 NYS	Notes and Comments
8.EE.8c Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.	8.EE.C.8c. Solve real-world and mathematical problems involving systems of two linear equations in two variables with integral coefficients.	NYS slightly changed the wording and removed the example.
Functions		
Define, evaluate, and compare functions.	A. Define, evaluate and compare functions.	
8.F.1. Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. [Function notation is not required in Grade 8.]	8.F.A.1. Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. (Note: The use of function notation and the terms domain and range are not required at this level.)	
8.F.2. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.	8.F.A.2. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic equation, determine which function has the greater rate of change.	NYS changed "expression" to "equation."

CCSS/Current NYS	2018-19 NYS	Notes and Comments
8.F.3. Interpret the equation $y = mx + b$ as	8.F.A.3. Interpret the equation y = mx + b as	
defining a linear function, whose graph is a	defining a linear function, whose graph is a	
straight line; give examples of functions that are	straight line; give examples of functions that are	
not linear. For example, the function A = s^2	not linear. For example, the function A = s^2	
giving the area of a square as a function of its	giving the area of a square as a function of its	
side length is not linear because its graph	side length is not linear because its graph	
contains the points (1,1), (2,4) and (3,9), which	contains the points (1,1), (2,4) and (3,9), which	
are not on a straight line.	are not on a straight line.	
Use functions to model relationships between	B. Use functions to model relationships	
quantities.	between quantities.	
8.F.4. Construct a function to model a linear	8.F.B.4. Construct a function to model a linear	
relationship between two quantities. Determine	relationship between two quantities. Determine	
the rate of change and initial value of the	the rate of change and initial value of the	
function from a description of a relationship or	function from a description of a relationship or	
from two (x , y) values, including reading these	from two (x, y) values, including reading these	
from a table or from a graph. Interpret the rate	from a table or from a graph. Interpret the rate	
of change and initial value of a linear function in	of change and initial value of a linear function in	
terms of the situation it models, and in terms of	terms of the situation it models, and in terms of	
its graph or a table of values.	its graph or a table of values.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
8.F.5. Describe qualitatively the functional	8.F.B.5. Describe qualitatively the functional	NYS slightly changed some wording and added
relationship between two quantities by	relationship between two quantities by	"a real world context."
analyzing a graph (e.g., where the function is	analyzing a graph. For example, where the	
increasing or decreasing, linear or nonlinear).	function is increasing or decreasing or whether	
Sketch a graph that exhibits the qualitative	the function is linear or nonlinear. Sketch a	
features of a function that has been described	graph that exhibits the qualitative features of a	
verbally.	function that has been described in a real-world	
	context.	
Geometry		
Understand congruence and similarity using	A. Understand congruence and similarity using	
physical models, trans- parencies, or geometry	physical models, transparencies, or geometry	
software.	software.	
8.G.1 Verify experimentally the properties of	8.G.A.1. Verify experimentally the properties of	NYS left the colon at the end of this stem
rotations, reflections, and translations:	rotations, reflections, and translations:	statement but separated the sub parts into
a. Lines are taken to lines, and line segments to		independent standards. This makes the stem
line segments of the same length.		grammatically incorrect and the sub parts do not
b. Angles are taken to angles of the same		describe a performance. Typo?
measure.	8.G.A.1a. Lines are taken to lines, and line	Measurability: This is a definition, not a
c. Parallel lines are taken to parallel lines.	segments to line segments of the same length.	performance standard.
	8.G.A.1b. Angles are taken to angles of the same	Measurability: This is a definition, not a
	measure.	performance standard.
	8.G.A.1c. Parallel lines are taken to parallel lines.	Measurability: This is a definition, not a
		performance standard.

CCSS/Current NYS	2018-19 NYS	Notes and Comments
8.G.2. Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.	8.G.A.2. Know that a two-dimensional figure is congruent to another if the corresponding angles are congruent and the corresponding sides are congruent. Also, understand that the image can be obtained from the pre-image by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that maps the congruence between them.	NYS changed the CCSS definition of congruence that continues into high school standards. In the CCSS, congruence is defined by transformations. In NYS, it is defined by relationships between corresponding angles and sides. In high school, NYS returns to the CCSS definition. There is no explanation of what the image and pre-image is in this additional statement. This may need to be included an a glossary of terms.
 8.G.3. Describe the effect of dilations, translations, rotations, and reflections on two- dimensional figures using coordinates. 8.G.4. Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two- dimensional figures, describe a sequence that exhibits the similarity between them. 	 8.G.A.3. Describe the effect of dilations, translations, rotations and reflections on two- dimensional figures using coordinates. 8.G.A.4. Know that a two-dimensional figure is similar to another if the corresponding angles are congruent and the corresponding sides are in proportion. Also understand that the image can be obtained from the pre-image by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that maps the similarity between them. 	NYS changed the CCSS definition of similarity that continues into high school standards. In the CCSS, similarity is defined by transformations. In NYS, it is defined by relationships between corresponding angles and sides. There is no explanation of what the image and pre-image is in this additional statement. This may need to be included an a glossary of terms.

CCSS/Current NYS	2018-19 NYS	Notes and Comments
8.G.5. Use informal arguments to establish facts	8.G.A.5. Use informal arguments to establish	NYS added a note to clarify that formal proof is
about the angle sum and exterior angle of	facts about the angle sum and exterior angle of	not part of the requirement. However, since the
triangles, about the angles created when parallel	triangles, about the angles created when parallel	standard, itself, starts with "use informal
lines are cut by a transversal, and the angle-	lines are cut by a transversal, and the angle-	arguments," this note should be unnecessary.
angle criterion for similarity of triangles. For	angle criterion for similarity of triangles. For	
example, arrange three copies of the same	example, arrange three copies of the same	
triangle so that the sum of the three angles	triangle so that the three angles appear to form	
appears to form a line, and give an argument in	a line, and give an argument in terms of	
terms of transversals why this is so.	transversals why this is so. (Note: This standard	
	does not include formal geometric proof.	
	Multiple representations may be used to	
	demonstrate understanding.)	
Understand and apply the Pythagorean	B. Understand and apply the Pythagorean	
Theorem.	Theorem.	
8.G.6. Explain a proof of the Pythagorean	8.G.B.6. Explore and understand a proof of the	NYS changed "explain a proof" to "explore and
Theorem and its converse.	Pythagorean Theorem and its converse.	understand a proof" with respect to the
		Pythagorean Theorem.
		It is not clear in the change in the performance
		verbs for this standard whether there is an even
		exchange in terms of rigor.
8.G.7. Apply the Pythagorean Theorem to	8.G.B.7. Apply the Pythagorean Theorem to	
determine unknown side lengths in right	determine unknown side lengths in right	
triangles in real-world and mathematical	triangles in real-world and mathematical	
problems in two and three dimensions.	problems in two and three dimensions.	
8.G.8. Apply the Pythagorean Theorem to find	8.G.B.8. Apply the Pythagorean Theorem to find	
the distance between two points in a coordinate	the distance between two points in a coordinate	
system.	system.	
System.	system.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
Solve real-world and mathematical problems	C. Solve real-world and mathematical problems	
involving volume of cylinders, cones, and	involving volume of cylinders, cones and	
spheres.	spheres.	
8.G.9. Know the formulas for the volumes of	8.G.C.9. Explore and use the formulas for the	NYS changed "know the formulas" to "explore
cones, cylinders, and spheres and use them to	volume of cones, cylinders, and spheres and use	and use the formulas." Typo: The verb "use" is
solve real-world and mathematical problems.	them to solve simple real-world and	included in two places in the same sentence.
	mathematical problems with limited complexity.	One or the other should be eliminated.
		It is not clear from definitions in the glossary of verbs whether the change in the performance verbs for this standard is an even exchange in terms of rigor.
Statistics and Probability		
Investigate patterns of association in bivariate	A. Investigate patterns of association in	
data.	bivariate data.	
8.SP.1. Construct and interpret scatter plots for	8.SP.A.1. Construct and interpret scatter plots	
bivariate measurement data to investigate	for bivariate measurement data to investigate	
patterns of association between two quantities.	patterns of association between two quantities.	
Describe patterns such as clustering, outliers,	Describe patterns such as clustering, outliers,	
positive or negative association, linear	positive or negative association, linear	
association, and nonlinear association.	association, and nonlinear association.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
8.SP.2. Know that straight lines are widely used	8.SP.A.2. Understand that straight lines are	NYS changed "know" to "understand" and added
to model relationships between two quantitative	widely used to model relationships between two	a note.
variables. For scatter plots that suggest a linear	quantitative variables. For scatter plots that	
association, informally fit a straight line, and	suggest a linear association, informally fit a	
informally assess the model fit by judging the	straight line, and informally assess the model fit	
closeness of the data points to the line.	by judging the closeness of the data points to	
	the line. (Note that lines of best fit are	
	approximations.)	
8.SP.3. Use the equation of a linear model to	8.SP.A.3. Use the equation of a linear model to	
solve problems in the context of bivariate	solve problems in the context of bivariate	
measurement data, interpreting the slope and	measurement data, interpreting the slope and	
intercept. For example, in a linear model for a	intercept. For example, in a linear model for a	
biology experiment, interpret a slope of 1.5	biology experiment, interpret a slope of 1.5	
cm/hr as meaning that an additional hour of	cm/hr as meaning that an additional hour of	
sunlight each day is associated with an	sunlight each day is associated with an	
additional 1.5 cm in mature plant height.	additional 1.5 cm in mature plant height.	

CCSS/Current NYS	2018-19 NYS	Notes and Comments
8.SP.4. Understand that patterns of association	8.SP.A.4. Understand that patterns of	
can also be seen in bivariate categorical data by	association can also be seen in bivariate	
displaying frequencies and relative frequencies	categorical data by displaying frequencies and	
in a two-way table. Construct and interpret a	relative frequencies in a two-way table.	
two-way table summarizing data on two	Construct and interpret a two-way table	
categorical variables collected from the same	summarizing data on two categorical variables	
subjects. Use relative frequencies calculated for	collected from the same subjects. Use relative	
rows or columns to describe possible association	frequencies calculated for rows or columns to	
between the two variables. <i>For example, collect</i>	describe possible association between the two	
data from students in your class on whether or	variables. For example, collect data from	
not they have a curfew on school nights and	students in your class on whether or not they	
whether or not they have assigned chores at	have a curfew on school nights and whether or	
home. Is there evidence that those who have a	not they have assigned chores at home. Is there	
curfew also tend to have chores?	evidence that those who have a curfew also tend	
	to have chores?	

The CCSS identified as for those students planning careers or studies in higher mathematics with the (+) are further identified in this chart in green highlighted cells. CCSS that are identified as modeling standards have an asterisk (*).

In the state column any standard shaded in green is addressed earlier and in pink is addressed one year later than in the CCSS. In the CCSS column standards shaded in orange are (+) standards, or those indicated for students intending to pursue studies or careers in the STEM fields.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
NUMBER AND					
QUANTITY					
The Real Number	The Real Number	The Real Number			
System	System (N-RN)	System (N-RN)			
Extend the properties		A. Extend the			
of exponents to		properties of			
rational exponents.		exponents to rational			
		exponents.			

NYS ALG II	NYS GEO	Plus	Notes and Comments
N-RN.A.1 Explore how			NYS removed the example
the meaning of			and slightly rephrased the
rational exponents			standard to specifically call
follows from			out the use of radicals for
extending the			expressions involving rational
properties of integer			exponents.
exponents.			
	the meaning of rational exponents follows from extending the	the meaning of rational exponents follows from extending the properties of integer	the meaning of rational exponents follows from extending the properties of integer

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
N-RN.2. Rewrite	•	N-RN.A.2 Convert	•		NYS added an example to
expressions involving		between radical			clarify the scope for this
radicals and rational		expressions and			standard.
exponents using the		expressions with			
properties of		rational exponents			
exponents.		using the properties			
		of exponents. Include			
		expressions with			
		variable factors, such			
		as cube-rt(27			
		being equivalent to (27x^5y^3)^(႑/3) ^y			
		which equals			
		3x^(5/3)y.			

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
Use properties of	B. Use properties of				
rational and irrational	rational and irrational				
numbers.	numbers.				
N-RN.3. Explain why	N-RN.B.3. Use			•	This NYS addition is unclear
the sum or product of	properties and				and has a measurability issue.
two rational numbers	operations to				How would "properties and
is rational; that the	understand different				operations" be used to
sum of a rational	forms of rational and				understand the different
number and an	irrational numbers.				forms?
irrational number is					
irrational; and that	3a. Perform	•			NYS added a requirement to
the product of a	operations and apply				operate with rational and
nonzero rational	properties to generate				irrational numbers, including
number and an	equivalent forms of				a limitation of square roots
irrational number is	rational and irrational				only. Also, it is not clear what
irrational.	numbers (limited to				is meant by "equivalent forms
	square roots), without				of rational and irrational
	rationalizing				numbers." What sort of
	denominators.				equivalent forms would be
					expected for $\sqrt{7}$, for example?
					This hints at what is
					traditionally thought of as
					"simplifying radicals," but if
					that is the intent, it should be
					made clear.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
	3b. Explain why (using definitions): i) the sum or product of two rational numbers is rational; ii) the sum of a rational number and an irrational number is irrational; iii) the product of a nonzero rational number and an irrational number is irrational number is irrational; and iv) the product of two irrationals could be either rational or irrational.				This sub part of the NYS version is a near match with the CCSS counterpart. NYS added the product of two irrationals
Quantities*	Quantities (N-Q)	Quantities (N-Q) ★			This header does not have the modeling indicator for Algebra I. However, it was added to the cluster title below.
Reason quantitatively and use units to solve problems.	A. Reason quantitatively and use units to solve problems. ★				The modeling indicator on this cluster would also apply to the standards below.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
N-Q.1. Use units as a	N-Q.A.1. Use units as				NYS changed "understand
way to understand	a way to: i) <mark>interpret</mark>				problems" to "interpret the
problems and to guide	and guide the solution				solution."
the solution of multi-	of multi-step				
step problems;	problems; ii) choose				
choose and interpret	and interpret units				
units consistently in	consistently in				
formulas; choose and	formulas; and iii)				
interpret the scale	choose and interpret				
and the origin in	the scale and the				
graphs and data	origin in graphs and				
displays.*	data displays.				
N-Q.2. Define					NYS believes this is addressed
appropriate quantities					adequately by MP.2 and MP.4.
for the purpose of					
descriptive modeling.*					

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
N-Q.3. Choose a level	N-Q.A.3. Choose a		•		NYS added a definition and
of accuracy	level of accuracy				example. The added example
appropriate to	appropriate to				should be carefully re-
limitations on	limitations on				evaluated, as level of
measurement when	measurement when				accuracy is much more
reporting quantities.*	reporting quantities.				nuanced than implied here.
	The greatest precision				(Clarity)
	for a result is only at				
	the level of the least				
	precise data point. For				
	example, if units are				
	tenths and				
	hundredths, then the				
	appropriate				
	preciseness is tenths.				
The Complex Number		The Complex Number			
System		System (N-CN)			
Perform arithmetic		A. Perform arithmetic			
operations with		operations with			
complex numbers.		complex numbers.			

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
N-CN.1. Know there is .		N-CN.A.1 Know there			NYS added more detail.
a complex number i		are imaginary			
such that <i>i</i> ^ 2 = −1,		numbers that cannot			
and every complex		be represented on the			
number has the form		real number line, and			
a + bi with a and b		that i, derived from			
real.		i^2=-1, <mark>is the</mark>			
		imaginary unit. Know			
		that there are			
		complex numbers			
		which have the form			
		a +bi, where a and b			
		are real.			
N-CN.2. Use the .		N-CN.A.2. Use the			
relation <i>i</i> ^ 2 = –1 and		relation i^2 = -1 and			
the commutative,		the commutative,			
associative, and		associative, and			
distributive properties		distributive properties			
to add, subtract, and		to add, subtract, and			
multiply complex		multiply complex			
numbers.		numbers.			
N-CN.3. (+) Find the .				N-CN.A.3+ Find the	
conjugate of a				conjugate of a	
complex number; use				complex number; use	
conjugates to find				conjugates to find	
moduli and quotients				moduli and quotients	
of complex numbers.				of complex numbers.	

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
Represent complex	•		•	B. Represent complex	
numbers and their				numbers and their	
operations on the				operations on the	
complex plane.				complex plane.	
N-CN.4. (+) Represent	•			N-CN.B.4+ 4a.	NYS added conversion
complex numbers on				Represent complex	between rectangle and polar
the complex plane in				numbers on the	forms for complex numbers.
rectangular and polar				complex plane in	This is not explicitly stated in
form (including real				rectangular and polar	the CCSS, but it is implied.
and imaginary				form (including real	
numbers), and explain				and imaginary	The (+) is missing in the pdf
why the rectangular				numbers), <mark>and</mark>	version of the standards
and polar forms of a				convert between	documents on these
given complex				rectangular and polar	additional sub standards.
number represent the				forms of a given	
same number.				complex number.	

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
				N-CN.B.4+ 4b.	NYS changed "explain why" to
				Determine whether	"determine whether,"
				rectangular or polar	creating a shift from the
				form is more efficient	CCSS. The CCSS expectation is
				given the context.	that students know that both
					forms represent the same
					mathematical entity.
					Arguably, the NYS assumes
					this, and expects students to
					make a judgment on which
					form is better given the
					context.
					Note: The (+) is missing in the
					pdf version of the standards
					' documents on these
					additional sub standards.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
N-CN.5. (+) Represent	•	•	•	N-CN.B.5+ 5.	NYS included two different
addition, subtraction,				Represent addition,	examples. The second
multiplication, and				subtraction,	appears to be an unfinished
conjugation of				multiplication, and	thought. Clarity is needed.
complex numbers				conjugation of	
geometrically on the				complex numbers	
complex plane; use				geometrically on the	
properties of this				complex plane; use	
representation for				properties of this	
computation. For				representation for	
example, (−1 + √3 i)^3				computation. For	
= 8 because (−1 + √3 i)				example, (-1 + √3 i)3 =	
has modulus 2 and				8 because (-1 + √3 i)	
argument 120°.				has modulus 2 and	
				argument 120°. For	
				example: DeMoivre's	
				Theorem	
N-CN.6. (+) Calculate		•	•	N-CN.B.6+ 6a.	NYS removed the connection
the distance between				Calculate the distance	between distance and the
numbers in the				between two points in	modulus of the difference.
complex plane as the				the complex plane.	
modulus of the					
difference, and the					
midpoint of a segment				N-CN.B.6+ 6b. Find	NYS removed the explanation
as the average of the				the midpoint of the	of how to find the midpoint.
numbers at its				segment whose	
endpoints.				endpoints are in the	
				complex plane.	

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
Use complex numbers in polynomial identities and equations.		C. Use complex numbers in polynomial identities and equations.			
N-CN.7 Solve . quadratic equations with real coefficients that have complex solutions.		N-CN.C.7. Solve quadratic equations with real coefficients that have complex solutions.	•		
N-CN.8 (+) Extend . polynomial identities to the complex numbers. For example, rewrite x^2 + 4 as $(x + 2i)(x - 2i)$.				N-CN.C.8+ Extend polynomial identities to the complex numbers. For example, rewrite x^2 + 4 as (x + 2i)(x – 2i).	
N-CN.9 (+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.				N-CN.C.9+ State and apply the Fundamental Theorem of Algebra.	NYS changed "know" to "state and apply," which are similar in meaning and rigor. For clarity, an example of how it would be applied might be needed. NYS also removed the requirement to show that the Theorem is true for quadratics.
Vector and Matrix Quantities					

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
	•		•	A. Represent and	
Represent and model				model with vector	
with vector quantities.				quantities.	
N-VM.1. (+) Recognize				N-VM.A.1+ Represent	NYS changed "recognize" to
vector quantities as				a vector analytically	"represent" and removed the
having both				and geometrically. For	explanation of vector
magnitude and				example: rectangular	quantities. In the
direction. Represent				form, polar form, unit	information/notes, it is stated
vector quantities by				form.	that this explanation should
directed line					be in a glossary rather than a
segments, and use					standard. However, there is
appropriate symbols					no mention of vectors in the
for vectors and their					glossary included with the
magnitudes (e.g., v ,					standards, which contains
$ \mathbf{v} , \mathbf{v} , v$).					only verbs. The meaning of
					"unit form" will need to be
					defined, as it is not a common
					term and could be
					interpreted in different ways.
N-VM.2. (+) Find the				N-VM.A.2+ Find the	NYS replaced "components"
components of a	•		•	magnitude and	with "magnitude and
vector by subtracting				direction of a given	direction." They also removed
the coordinates of an				vector.	the CCSS clarification of how
initial point from the					to find them.
coordinates of a					
terminal point.					
ternina point.					

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
N-VM.3. (+) Solve	•			N-VM.A.3+ Solve	NYS changed the wording,
problems involving				problems using	adding both analytic and
velocity and other				vectors analytically	geometric solutions.
quantities that can be				and geometrically	
represented by				(e.g. velocity and	
vectors.				forces).	
				B. Perform operations	
Perform operations				on vectors.	
on vectors.					
N-VM.4. (+) Add and				N-VM.B.4+ Add and	NYS added "analytically and
subtract vectors.				subtract vectors	geometrically" as required
				analytically and	methods for operating with
				geometrically.	vectors.
N-VM.4a Add vectors					NYS intends this to be
end-to-end,					covered by N-VM.B.4+
component-wise, and					through the inclusion of
by the parallelogram					"analytically and
rule. Understand that					geometrically," although the
the magnitude of a					understanding in the CCSS
sum of two vectors is					may not be clear to readers.
typically not the sum					
of the magnitudes.					

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
N-VM.4b Given two				•	NYS intends this to be
vectors in magnitude					covered by N-VM.B.4+
and direction form,					through the inclusion of
determine the					"analytically and
magnitude and					geometrically," although the
direction of their sum.					specifics of the CCSS
					expectation are not clear in N-
					VM.B.4+.
N-VM.4c Understand			•	·	NYS intends this to be
vector subtraction v –					covered by N-VM.B.4+
w as v + (-w), where					through the inclusion of
– w is the additive					"analytically and
inverse of w , with the					geometrically," although the
same magnitude as w					understanding about
and pointing in the					subtraction in the CCSS may
opposite direction.					not be clear to readers.
Represent vector					
subtraction					
graphically by					
connecting the tips in					
the appropriate order,					
and perform vector					
subtraction					
component-wise.					
N-VM.5. (+) Multiply a			•	N-VM.B.5+ Multiply a	NYS added "analytically and
vector by a scalar.				vector by a scalar	geometrically" as required
				analytically and	methods for operating with
				geometrically.	vectors.
				000000000000000000000000000000000000000	

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
N-VM.5a Represent					NYS intends this to be
scalar multiplication					covered by N-VM.B.5+
graphically by scaling					through the inclusion of
vectors and possibly					"analytically and
reversing their					geometrically."
direction; perform					
scalar multiplication					
component-wise, e.g.,					
as $c(v_x, v_y) = (cv_x, cv_y)$.					
N-VM.5b Compute					NYS intends this to be
the magnitude of a					covered by N-VM.B.5+
scalar multiple <i>c</i> v					through the inclusion of
using <i>c</i> v = <i>c</i> <i>v</i> .					"analytically and
Compute the direction					geometrically."
of <i>c</i> v knowing that					
when $ c \neq 0$, the					
direction of <i>c</i> v is					
either along \mathbf{v} (for c >					
0) or against \mathbf{v} (for $c <$					
0).					
				C. Perform operations	
Perform operations				on matrices and use	
on matrices and use				matrices in	
matrices in				applications.	
applications.					

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
N-VM.6. (+) Use	•			N-VM.C.6+ Use	NYS changed "manipulate
matrices to represent				matrices to represent	data" to "model real world
and manipulate data,				and model real world	situation" and changed the
e.g., to represent				situations. For	example. More explanation
payoffs or incidence				example: networks.	for the example may be
relationships in a					needed to make the modeling
network.					requirement clear.
N-VM.7. (+) Multiply				N-VM.C.7+ Multiply	NYS removed "to produce
matrices by scalars to				matrices by scalars.	new matrices," which is likely
produce new					implied.
matrices, e.g., as					
when all of the					
payoffs in a game are					
doubled.					
N-VM.8. (+) Add,				N-VM.C.8+ Add,	NYS removed "appropriate
subtract, and multiply				subtract, and multiply	dimensions," which would be
matrices of				matrices.	implied.
appropriate					
dimensions.					

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
N-VM.9. (+)	•		•	N-VM.C.9+	The NYS shift in expectation
Understand that,				Determine if matrices	to work with the algebraic
unlike multiplication				are a group under	structures of groups is
of numbers, matrix				addition and	significant given that there is
multiplication for				multiplication.	no other mention of defining
square matrices is not					or working with groups in the
a commutative					standards. (Coherence)
operation, but still					
satisfies the					
associative and					
distributive					
properties.					
N-VM.10. (+)					This CCSS requirement to
Understand that the					understand the identity and
zero and identity					inverse would be part of what
matrices play a role in					is intended in N-VM.C.9+, but
matrix addition and					that may need to be clearer
multiplication similar					for teachers.
to the role of 0 and 1					
in the real numbers.					The NYS also removes
The determinant of a					foundational understandings
square matrix is					of determinants.
nonzero if and only if					
the matrix has a					
multiplicative inverse.					

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
N-VM.11. (+) Multiply	•			N-VM.C.11+ Use	NYS rephrases this standard
a vector (regarded as				matrices to perform	to focus more on linear
a matrix with one				linear transformations	transformations without a
column) by a matrix of				in the plane. For	strict restriction to vectors.
suitable dimensions to				example: multiplying a	
produce another				vector by 2x2 matrix.	
vector. Work with					
matrices as					
transformations of					
vectors.					
N-VM.12. (+) Work				N-VM.C.12+ Calculate	NYS focused this standard on
with 2 X 2 matrices as				and interpret the	the application of the
transformations of the				determinant of a	determinant of a matrix. The
plane, and interpret				matrix. For example:	NYS example needs to be
the absolute value of				calculating area.	more clearly connected to
the determinant in					the requirement. It would be
terms of area.					clearer to say: "For example:
					Interpret the absolute value
					of the determinant in terms
					of area." This NYS is missing
					the 2x2 limitation.
ALGEBRA					
Seeing structure in	Seeing Structure in	Seeing Structure in			
expressions	Expressions (A-SSE)	Expressions (A-SSE)			

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
Interpret the	A. Interpret the	A. Interpret the			
structure of	structure of	structure of			
expressions	expressions.	expressions.			
A-SSE.1. Interpret	A-SSE.A.1. Interpret				The modeling indicator on
expressions that	expressions that				this standard would also
represent a quantity	represent a quantity				apply to the sub parts below.
in terms of its	in terms of its context.				
context.*	*				
A-SSE.1a Interpret	A-SSE.A.1a. Given a				NYS specified that this
parts of an expression,	polynomial, write the				standard is only about
such as terms, factors,	standard form and				polynomials, rather than all
and coefficients.*	interpret the parts of				expressions, and added other
	the polynomial:				vocabulary and the
	terms, factors,				requirement to write a
	coefficients, degree,				polynomial in standard
	leading coefficient,				(general?) form.
	and constant term.				

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
A-SSE.1b Interpret	A-SSE.A.1b. Fluently				NYS added fluency to this
complicated	interpret complicated				requirement. It is not clear
expressions by	expressions by				how fluency applies here.
viewing one or more	viewing one or more				Which part of the glossary
of their parts as a	of their parts as a				definition should be applied
single entity. For	single entity. For				here: "just knowing some
example, interpret	example, interpret				answers," "knowing some
P (1+r)^n as the	P(1+r)^n as the				answers from patterns," or
product of P and a	product of P and a				"knowing some answers from
factor not depending	factor not depending				the use of strategies?"
on P.*	on P.				

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
A-SSE.2. Use the	A-SSE.A.2a. Use the	A-SSE.A.2b. Fluently	•	•	For Alg I, NYS excluded
structure of an	structure of an	use the structure of			factoring by grouping and the
expression to identify	expression to identify	an expression to			sum/difference of cubes.
ways to rewrite it. For	ways to rewrite it. For	identify ways to			For Alg II, NYS added back the
example, see x^ 4 –	example, see x^4 -	rewrite it, including			specific exclusions for Alg I
y^ 4 as (x^ 2)^2 –	y^4 as (x^2)^2 -	factoring by grouping			and added fluency and
(y^ 2)^2, thus	(y^2)^2, thus	and factoring the sum			several polynomial examples
recognizing it as a	recognizing it as a	and difference of			(and rational expressions
difference of squares	difference of squares	cubes. Tasks are			involving polynomials). More
that can be factored	that can be factored	limited to polynomial,			clarity is needed to ensure
as (x^2 - y^2)(x^2 +	as (x^2 - y^2)(x^2 +	rational or			"fluency" is consistently
<i>y^</i> 2).	y^2). Note: Does not	exponential			understood regarding
	include factoring by	expressions. Examples			exponential expressions.
	grouping and	include, but are not			Which part of the glossary
	factoring the sum and	limited to:			definition should be applied
	difference of cubes.	a) 81 ~4–16 ~4 is			here: "just knowing some
		equivalent to			answers," "knowing some
		(9 ^2)2–(4 ² /2)^2 or			answers from patterns," or
		(9 ^2-4^ 2)(9 ^2+4			"knowing some answers from
		^2) or ^y			the use of strategies?"
		$(3^{x}+2)(3^{y}-2)(9^{x})(9^{2}+2)$			
		4 ^2)			
		b) ^x ^2¥4 ¥4+ ^y ^2 * 25			
		is ^y equivalent to			
		$(+2)^{\chi}^{\chi}^{2}^{2}^{2}^{\chi}^{2}^{2}^{2}^{\chi}^{2}^{2}$			
		c) (^2+4)/(^2+3) is			
		equivalent to			
		$[(\overset{\chi}{2}+3)+1)^{\chi}/(^{2}+3)$			

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
Write expressions in	B. Write expressions	B. Write expressions			NYS changed the title for this
equivalent forms to	in equivalent forms to	in equivalent forms to			cluster for Alg I, to remove
solve problems	reveal their characteristics. ★	solve problems. ★			problem solving. It is not clear what "characteristics" of an expression would be revealed. Is it possible that the intention is to match the requirement of A-SSE.B.3? In that case this title should be focused on the properties of the quantity represented by the expression.
A-SSE.3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.*		A-SSE.B.3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (Shared with A1)		•	There is no progression defined or explained for Alg I and II. The limits between the levels needs to be clarified (measurability).

quadratic expressions completely: i) using the greatest common factor; ii) recognizing	A-SSE.B.3a. Factor quadratic expressions including leading coefficients other than 1 to reveal the		•	NYS added limitations and progression from Alg I to Alg II. It should be noted that the
completely: i) using he greatest common actor; ii) recognizing	including leading coefficients other			
he greatest common actor; ii) recognizing	coefficients other			II. It should be noted that the
actor; ii) recognizing				
	than 1 to reveal the			Alg I version does not appear
he difference of two				to focus on revealing the
	zeros of the function			characteristics of the function.
perfect squares; and	it defines.			
ii) with trinomials				
where the leading				
coefficient is +/- 1				
only after removing				
oossible GCF.				
	A-SSE.B.3b. Factor			NYS added an example but
	quadratic expressions			removed the purpose for
	by completing the			completing the square,
	square. For example,			weakening the coherence
	the expression x^4 +			with the cluster header.
	x^2 +1 can be			
	rewritten as x^4 + x^2			Note that in Geometry
	$+ x^{2} + 1 - x^{2}$, which			completing the square is
	is equivalent to (x^2			connected to finding the
	+1)(x^2 +1) – x^2 or it			center (see G.GPE.A.1).
	can be rewritten as			
	(x^2 + 1^2) ^2 + 3^4.			
	erfect squares; and i) with trinomials where the leading pefficient is +/- 1 nly after removing ossible GCF.	erfect squares; and i) with trinomials where the leading pefficient is +/- 1 nly after removing ossible GCF. A-SSE.B.3b. Factor quadratic expressions by completing the square. For example, the expression x^4 + x^2 +1 can be rewritten as x^4 + x^2 + x^2 + 1 - x^2 , which is equivalent to $(x^2$ +1) $(x^2$ +1) - x^2 or it can be rewritten as	erfect squares; and i) with trinomials where the leading pefficient is +/- 1 nly after removing ossible GCF. A-SSE.B.3b. Factor quadratic expressions by completing the square. For example, the expression $x^{4} + x^{2} + 1$ can be rewritten as $x^{4} + x^{2} + x^{2} + 1 - x^{2}$, which is equivalent to $(x^{2} + 1)(x^{2} + 1) - x^{2}$ or it can be rewritten as	erfect squares; and i) with trinomials where the leading pefficient is +/- 1 nly after removing ossible GCF.it defines.A-SSE.B.3b. Factor quadratic expressions by completing the square. For example, the expression $x^{A} + x^{2} + 1$ can be rewritten as $x^{A} + x^{2}$ $+ x^{2} + 1 - x^{2}$, which is equivalent to $(x^{2} + 1)(x^{2} + 1) - x^{2}$ or it can be rewritten as.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
A-SSE.3c Use the	A-SSE.B.3c. Use the	A-SSE.B.3c. Use the			NYS removed the idea that
properties of	properties of	properties of			the expressions represent
exponents to	exponents to rewrite	exponents to rewrite			functions. They added
transform expressions	exponential	exponential			limitations and specific
for exponential	expressions. Algebra I	expressions.			examples related to the
functions. For	tasks are limited to	Exponents will be			limitation for Alg I and
example the	exponential	rational. For example			progression from Alg I to Alg
expression 1.15^t can	expressions whose	the expression 1.15 ^t			II.
be rewritten as	exponent contains a	can be rewritten as			
(1.15^(1/12))^(12 <i>t</i>) ≈	linear expression in	(1.15^(1/12))^(12t) =			
1.012^12t to reveal	which the linear term	1.012^(12t) to reveal			
the approximate	has an integer	the approximate			
equivalent monthly	coefficient.	equivalent monthly			
interest rate if the	For example 3 ² x can	interest rate when the			
annual rate is 15%.*	be rewritten as	annual rate is 15%.			
	(3^2)^x which is 9^x				
	or 252.290(0.9439)^(t-				
	30 =				
	252.290(0.9439)^t*(0.				
	9439)^(-3) is				
	approximately				
	300(0.9439)^t.				
	https://www.illustrativ				
	emathematics.org/con				
	tent-				
	standards/HSA/SSE/B/				
	3/tasks/1305				

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
A-SSE.4 Derive the		F-BF.B.7. Explore the			NYS addressed this concept in
formula for the <mark>sum</mark>		derivation of the			the Functions domain. The
of a finite geometric		formulas for			NYS level of rigor is lower,
series (when the		arithmetic and finite			since students are required to
common ratio is not		geometric series. Use			"explore" the formulas but
1), and use the		the series to solve			not required to derive them.
formula to solve		problems. For			NYS also removed the word
problems. <i>For</i>		example, calculate			"sum" - this is may have been
example, calculate		mortgage payments.			a mistake, as it leaves it
mortgage payments.*		*			unclear what the "formulas
					for series" should do.
					[Note: Both NYS and the CCSS
					addresses writing geometric
					and arithmetic sequences in F-
					BF.2]
Arithmetic with	Arithmetic with	Arithmetic with			
Polynomial and	Polynomials and	Polynomials and			
Rational Expressions	Rational Expressions	Rational Expressions			
	(A-APR)	(A-APR)			
Perform arithmetic	A. Perform arithmetic				
operations on	operations on				
polynomials	polynomials.				

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
A-APR.1. Understand	A-APR.A.1. Fluently		•		NYS removed the conceptual
that polynomials form	add, subtract, and				understanding required in the
a system analogous to	multiply polynomials.				CCSS and added fluency to
the integers, namely,					this requirement.
they are closed under					
the operations of					
addition, subtraction,					
and multiplication;					
add, subtract, and					
multiply polynomials.					
Understand the	B. Understand the	B. Understand the			
relationship between	relationship between	relationship between			
zeros and factors of	zeros and factors of	zeros and factors of			
polynomials	polynomials.	polynomials.			

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
A-APR.2. Know and		A-APR.B.2.			NYS replaced "know and
apply the Remainder		Demonstrate			apply" with "demonstrate
Theorem: For a		knowledge of and			knowledge of and apply."
polynomial $p(x)$ and a		apply the Remainder			
number <i>a</i> , the		Theorem: For a			
remainder on division		polynomial p(x) and a			
by $x - a$ is $p(a)$, so		number a, the			
p(a) = 0 if and only if		remainder on division			
(x - a) is a factor of		by x – a is p(a), so p(a)			
р(х).		= 0 if and only if $(x - a)$			
		is a factor of p(x).			
A-APR.3. Identify	A-APR.B.3. Identify	A-APR.B.3.Identify			
zeros of polynomials	zeros of polynomials.	zeros of polynomials.			
when suitable					
factorizations are					

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
available, and use the	A-APR.B.3a. Identify:	A-APR.B.3b. i) Identify		•	NYS used sub parts to add
zeros to construct a	i) the zeros of	zeros of quadratic,			detail defining the
rough graph of the	quadratic and cubic	cubic, and quartic			progression from Alg I to II.
function defined by	polynomials in which	polynomials when			However there is an overlap
the polynomial.	linear and quadratic	suitable factorizations			of quadratic and cubic
	factors are available;	are available;			polynomials in both. Is cubic
	For example, find the	ii) use the zeros to			intended for Alg I? And how
	zeros of (x-2) (x^2-	construct a rough			will quadratics specifically be
	9)=0. ii) the graph of	graph of the function			treated differently in the two
	the function defined	defined by the			courses?
	by the polynomial	polynomial; and iii)			
	equation; and	create an appropriate			
	iii) an appropriate	equation given the			
	equation of a function	zeros and/or a graph.			
	given the zeros of that				
	function.				
Use polynomial		C. Use polynomial			
identities to solve		identities to solve			
problems		problems.			

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
A-APR.4. Prove		A-APR.C.4. Prove			NYS removed the purpose
polynomial identities		polynomial identities.			for proving the identities
and use them to		For example, prove			(application). This standard
describe numerical		the identity (x^2 +			has become more procedural
relationships. For		y^2)^2 = (x^2 -			in NYS.
example, the		y^2)^2 + (2xy)^2 <mark>or</mark>			
polynomial identity		prove that the			
$(x^{A} 2 + y^{A} 2)^{A} = (x^{A} 2)^{A}$		difference between			
- y^ 2)^2 + (2xy)^2		squares of			
can be used to		consecutive integers is			
generate		odd.			
Pythagorean triples.					

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
A-APR.5. (+) Know and	•		•	A-APR.C.5+ Use the	NYS removed the
apply the Binomial				Binomial Theorem for	requirement to "know" the
Theorem for the				the expansion of (x +	Binomial Theorem and the
expansion of (x +				y)^n for a positive	supporting detail. Without a
y)^n in powers of x				integer n.	glossary, more may be
and y for a positive					needed to ensure consistent
integer <i>n</i> , where <i>x</i>					delivery of this standard.
and y are any					
numbers, with					
coefficients					
determined for					
example by Pascal's					
Triangle. [The					
Binomial Theorem can					
be proved by					
mathematical					
induction or by a					
combinatorial					
argument.]					
Rewrite rational	•	D. Rewrite rational			
expressions		expressions.			

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
A-APR.6. Rewrite		A-APR.D.6. Fluently,	•		NYS added fluency to this
simple rational		rewrite rational			requirement and removed
expressions in		expressions in			the methods for rewriting.
different forms; write		different forms: Write			
a(x)/b(x) in the form		a(x)/b(x) in the form			
q(x) + r(x)/b(x),		q(x) + r(x)/b(x), where			
where <i>a</i> (<i>x</i>), <i>b</i> (<i>x</i>),		a(x), b(x), q(x), and			
<i>q</i> (<i>x</i>), and <i>r</i> (<i>x</i>) are		r(x) are polynomials			
polynomials with the		with the degree of r(x)			
degree of <i>r</i> (<i>x</i>) less		less than the degree			
than the degree of		of b(x).			
b (x), using inspection,					
long division, or, for					
the more complicated					
examples, a computer					
algebra system.					

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
A-APR.7. (+)	•			A-APR.D.7+	
Understand that				Understand that	
rational expressions				rational expressions	
form a system				form a system	
analogous to the				analogous to the	
rational numbers,				rational numbers,	
closed under addition,				closed under addition,	
subtraction,				subtraction,	
multiplication, and				multiplication, and	
division by a nonzero				division by a nonzero	
rational expression;				rational expression;	
add, subtract,				add, subtract,	
multiply, and divide				multiply, and divide	
rational expressions.				rational expressions.	
Creating Equations*	Creating Equations (A-	Creating Equations (A-		•	NYS deleted the modeling
	CED)	CED) ★			indicator for this header for
					Alg I. However it was added
					to the cluster below.
	A. Create equations	A. Create equations			The modeling indicator on
Create equations that	that describe number	that describe number			this cluster would also apply
describe numbers or	or relationships. ★	or relationships. ★			to the standards below.
relationships					

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
A-CED.1. Create	A-CED.A.1a. Create	A-CED.A.1b. Create			NYS stopped short of a
equations and	equations and linear	equations and			requirement to solve
inequalities in one	inequalities in one	inequalities in one			problems. Their version
variable and use them	variable to represent	variable to represent			requires creating an equation
to solve problems.	a real world context.	a real world context.			to represent a context. In Alg
Include equations	Limit equations to	Include linear,			II, NYS dropped the "simple"
arising from linear	linear, quadratic, and	quadratic, rational,			descriptor for rational
and quadratic	simple exponentials.	and exponential			expressions and in Alg I,
functions, and simple		functions.			added it to exponentials.
rational and					
exponential					Note: NYS includes linear and
functions.*					quadratic functions in both
					Alg I and Alg II standards. It is
					not clear how Alg II treatment
					of linear and quadratic
					functions will be different
					from that of Alg I.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
A-CED.2. Create	A-CED.A.2. Create				NYS limited the standard to
equations in two or	equations and linear				linear, quadratic, and simple
more variables to	inequalities in two				exponential equations and
represent	variables to represent				only two variables and added
relationships between	a real world context.				linear inequalities. There is no
quantities; graph	Limit equations to				NYS requirement to graph.
equations on	linear, quadratic, and				
coordinate axes with	simple exponentials.				There is no progression for
labels and scales.*					the functions addressed in Alg
					II even though the notes for
					Alg I say that three variables
					are an expectation for Alg II.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
A-CED.3. Represent	A-CED.A.3. Represent				There is no progression for
constraints by	constraints by				this requirement to the
equations or	equations or				functions addressed in Alg II.
inequalities, and by	inequalities, and by				
systems of equations	systems of equations				
and/or inequalities,	and/or inequalities,				
and interpret	and interpret				
solutions as viable or	solutions as viable or				
non-viable options in	non-viable options in				
a modeling context.	a modeling context.				
For example,	For example,				
represent inequalities	represent inequalities				
describing nutritional	describing nutritional				
and cost constraints	and cost constraints				
on combinations of	on combinations of				
different foods.*	different foods.				
			l	1	

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
A-CED.4. Rearrange	A-CED.A.4. Rearrange				There is no progression for
formulas to highlight a	formulas to highlight a				this requirement to the
quantity of interest,	quantity of interest,				functions addressed in Alg II.
using the same	using the same				
reasoning as in solving	reasoning as in solving				
equations. For	equations. For				
example, rearrange	example, rearrange				
Ohm's law V = IR to	Ohm's law V = IR to				
highlight resistance	highlight resistance R.				
R.*					
Reasoning with	Reasoning with	Reasoning with			
Equations and	Equations and	Equations and			
Inequalities	Inequalities (A-REI)	Inequalities (A-REI)			
Understand solving	A. Understand solving	A. Understand solving			
equations as a	equations as a	equations as a			
process of reasoning	process of reasoning	process of reasoning			
and explain the	and explain the	and explain the			
reasoning	reasoning.	reasoning.			

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
A-REI.1. <mark>Explain</mark> each	A-REI.A.1a. <mark>Identify</mark>	A-REI.A.1b. Identify	•		NYS changed "explain" to
step in solving a	the property used in	the property used in			"identify the property used."
simple equation as	each step when	each step when			They included progression of
following from the	solving a linear or	solving rational or			equations types for Alg I and
equality of numbers	quadratic equation as	radical equations as			II. While NYS specifically
asserted at the	following from the	following from the			called out linear, quadratic,
previous step, starting	equality of numbers	equality of numbers			rational, and radical, it
from the assumption	asserted at the	asserted at the			appears that exponential
that the original	previous step, starting	previous step, starting			equations were left out of
equation has a	from the assumption	from the assumption			both NYS versions. Does this
solution. Construct a	that the original	that the original			represent an intentional
viable argument to	equation has a	equation has a			change in focus by NY? Or
justify a solution	solution. Construct a	solution. Construct a			was it an accidental deletion?
method.	viable argument to	viable argument to			
	justify a solution	justify a solution			
	method.	method.			
A-REI.2. Solve simple		A-REI.A.2. Solve			
rational and radical		rational and radical			
equations in one		equations in one			
variable, and give		variable, identify			
examples showing		extraneous solutions,			
how extraneous		and explain how they			
solutions may arise.		, ,			
Solve equations and	B. Solve equations	B. Solve equations			
inequalities in one	and inequalities in	and inequalities in			
variable	one variable.	one variable.			

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
A-REI.3. Solve linear	A-REI.B.3. Solve linear				
equations and	equations and				
inequalities in one	inequalities in one				
variable, including	variable, including				
equations with	equations with				
coefficients	coefficients				
represented by letters.	represented by letters.				
A-REI.4. Solve	A-REI.B.4. Solve	A-REI.B.4. Solve			The Alg I version appears to
quadratic equations in	quadratic equations in	quadratic equations in			be a more rigorous
one variable.	one variable.	one variable. (Shared			requirement. Without
	Solutions may include	with A1)			progression, this concept is
	simplifying radicals.				redundant in Alg II.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
A-REI.4a Use the	A-REI.B.4a. Use the		•		NYS removed the
method of completing	method of completing				requirement to derive the
the square to	the square to				quadratic formula and placed
transform any	transform any				limitations on the
quadratic equation in	quadratic equation in				coefficients. There is no
x into an equation of	x into an equation of				progression for Alg II. Is it
the form $(x - p)^2 = q$	the form (x-p)^2 = q				possible that the limitations
that has the same	that has the same				on Alg I were intended to be
solutions. Derive the	solutions.				expanded for Alg II?
quadratic formula	Note: The quadratic's				
from this form.	leading coefficient				
	must be 1 and the				
	coefficient of the				
	linear term must be				
	even (after factoring				
	out any GCF).				
l					

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
A-REI.4b Solve	A-REI.B.4b. Solve	A-REI.B.4b. Solve			
quadratic equations	quadratic equations	quadratic equations			
by inspection (e.g., for	by:	by:			
x^2 = 49), taking	i) inspection;	i) inspection;			
square roots,	ii) taking square roots;	ii) taking square roots;			
completing the	iii) factoring;	iii) factoring;			
square, the quadratic	iv) completing the	iv) completing the			
formula and factoring,	square; and	square; and			
as appropriate to the	v) the quadratic	v) the quadratic			
initial form of the	formula.	formula.			
equation. Recognize	Recognize when the	Recognize when the			
when the quadratic	quadratic formula	quadratic formula			
formula gives complex	yields no real	yields no real			
solutions and write	solutions.	solutions.			
them as $a \pm bi$ for					
real numbers a and b .					
		4c. Recognize when			
		the quadratic has			
		complex solutions and			
		write them in a + bi			
		form.			
Solve systems of	C. Solve systems of	C. Solve systems of			
equations	Equations	Equations			

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
A-REI.5. Prove that,	A-REI.C.5. Justify that,				NYS changed "prove" to
given a system of two	given a system of two				"justify" and removed the
equations in two	equations in two				concept of combining the
variables, replacing	variables, replacing				replaced equation with one
one equation by <mark>the</mark>	one equation by <mark>a</mark>				of the originals to produce a
sum of that equation	multiple of that				solution. This is odd,
and a multiple of the	equation produces a				mathematically, and
other produces a	system with the same				weakened the standard.
system with the same	solution.				
solutions.					
A-REI.6. Solve systems	A-REI.C.6a. Solve			A-REI.C.6b+ Solve	NYS added a progression for
of linear equations	systems of linear			systems of linear	the Plus standards.
exactly and	equations in two			equations in three	
approximately (e.g.,	variables both			variables.	
with graphs), focusing	algebraically and				
on pairs of linear	graphically.				
equations in two					
variables.					

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
A-REI.7. Solve a simple	A-REI.7a. Solve a	A-REI.C.7b. Solve a	•		NYS added limitations and
system consisting of a	system, with rational	system consisting of a			removed the example for Alg
linear equation and a	solutions, consisting	linear equation and a			I.
quadratic equation in	of a linear equation	quadratic equation in			
two variables	and a quadratic	two variables			
algebraically and	equation (parabolas	algebraically and			
graphically. <i>For</i>	<mark>only</mark>) in two variables	graphically. For			
example, find the	both algebraically and	example, find the			
points of intersection	graphically.	points of intersection			
between the line y =		between the line y =			
$-3x$ and the circle x^{2}		–3x and the circle x^2			
+ <i>y^</i> 2 = 3.		+ y^2 = 3.			
A-REI.8. (+) Represent			•	A-REI.C.8+ Represent	•
a system of linear				a system of linear	
equations as a single				equations as a single	
matrix equation in a				matrix equation in a	
vector variable.				vector variable.	
A-REI.9. (+) Find the			•	A-REI.C.9+ Find the	•
inverse of a matrix if it				inverse of a matrix if it	
exists and use it to				exists and use it to	
solve systems of linear				solve systems of linear	
equations (using				equations (using	
technology for				technology for	
matrices of dimension				matrices of dimension	
3 X 3 or greater).				3 × 3 or greater).	

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
Represent and solve	D. Represent and	D. Represent and			
equations and	solve equations and	solve equations and			
inequalities	inequalities	inequalities			
graphically	graphically.	graphically.			
A-REI.10. Understand	A-REI.D.10.				NYS removed the CCSS
that the graph of an	Understand that the				explanation.
equation in two	graph of an equation				
variables is the set of	in two variables is the				
all its solutions	set of all its solutions				
plotted in the	plotted in the				
coordinate plane,	coordinate plane.				
often forming a curve					
(which could be a line).					

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
A-REI.11. Explain why	A-REI.D.11. <mark>Given</mark> the	A-REI.D.11. Given the			NYS changed "explain why
the x -coordinates of	equations y=f(x) and	equations y=f(x) and			the equations" to "given the
the points where the	y=g(x):	y=g(x):			equations." They removed
graphs of the	i) recognize that each	i) recognize that each			successive approximations
equations $y = f(x)$	x-coordinate of the	x-coordinate of the			and added interpretation of
and $y = g(x)$ intersect	intersection(s) is the	intersection(s) is the			the solution in context.
are the solutions of	solution to the	solution to the			Progressions are described
the equation $f(x) =$	equation f(x)=g(x); and	equation f(x)=g(x);			for Alg I and II.
<i>g</i> (<i>x</i>); find the	ii) find the solutions	and			
solutions	approximately using	ii) find the solutions			Note: NYS includes linear,
approximately, e.g.,	technology to graph	approximately using			polynomial, and absolute
using technology to	the functions or make	technology to graph			value functions in both Alg I
graph the functions,	tables of values; and	the functions or make			and Alg II standards. It is not
make tables of values,	iii) interpret the	tables of values; and			clear how Alg II treatment of
or find successive	solution in context. ★	iii) interpret the			linear, absolute value, and
approximations.	Algebra I Cases are	solution in context. ★			quadratic functions will be
Include cases where	limited to where f(x)	Note for Algebra II:			different from that of Alg I.
f(x) and/or $g(x)$ are	and g(x) are linear,	Include cases where			
linear, polynomial,	polynomial, absolute	f(x) and/or g(x) are			
rational, absolute	value and simple	linear, polynomial,			
value, exponential,	exponential functions.	rational, absolute			
and logarithmic		value, exponential,			
functions.*		and logarithmic			
		functions.			

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
A-REI.12. Graph the	A-REI.D.12. Graph the				
solutions to a linear	solutions to a linear				
inequality in two	inequality in two				
variables as a half-	variables as a half-				
plane (excluding the	plane (excluding the				
boundary in the case	boundary in the case				
of a strict inequality),	of a strict inequality),				
and graph the solution	and graph the solution				
set to a system of	set to a system of				
linear inequalities in	linear inequalities in				
two variables as the	two variables as the				
intersection of the	intersection of the				
corresponding half-	corresponding half-				
planes.	planes.				
FUNCTIONS		•			•
Interpreting Functions	Interpreting	Interpreting			
	Functions (F-IF)	Functions (F-IF)			
Understand the	A. Understand the	A. Understand the			
concept of a function	concept of a function	concept of a function			
and use function	and use function	and use function			
notation	notation.	notation.			

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
F-IF.1. Understand	F-IF.A.1. Define a				NYS removed the explanation
that a function from	function in terms of				and definition provided in the
one set (called the	domain and range,				CCSS and added a note
domain) to another	and the graph of f is				regarding notation used for
set (called the range)	the graph of the				domain and range. There is a
assigns to each	equation $y = f(x)$.				subtle difference here. The
element of the	Note: Domain and				CCSS is about defining
domain exactly one	range can be				functions, as a whole. The
element of the range.	expressed using				NYS is about defining a
If f is a function and x	inequality, set builder,				function for a given instance.
is an element of its	or interval notations.				
domain, then $f(x)$					The first sentence in the NYS
denotes the output of					does not define what they
f corresponding to					mean by f (compare to CCSS).
the input x . The graph					The second part of the
of f is the graph of the					sentence reads awkwardly.
equation $y = f(x)$.					Should it be, "the graph of f
					as the graph?" Also the
					comma after "domain and
					range" seems to be
					misplaced. It should either be
					removed or another comma
					added after "Define a
					function" so that the two
					performance verbs are not
					separated.

Notes and Comments
There is no progression for
this requirement to the
functions addressed in Alg II.
NYS addresses recursive
sequences in Alg II and added
an explanationfor Alg I.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
F-IF.4. For a function	F-IF.B.4a. For a	F-IF.B.4b. For a	•		NYS includes progression
that models a	function that models a	function that models a			information for Alg I and II.
relationship between	relationship between	relationship between			
two quantities,	two quantities: i)	two quantities: i)			It is not clear how square and
interpret key features	interpret key features	interpret key features			cube root functions will be
of graphs and tables in	of graphs and tables in	of graphs and tables in			approached in Alg I since
terms of the	terms of the	terms of the			higher order polynomials
quantities, and sketch	quantities; and ii)	quantities; and ii)			(cube) and inverse functions
graphs showing key	sketch graphs showing	sketch graphs showing			will not be addressed until Alg
features given a	key features given a	key features given a			н.
verbal description of	verbal description of	verbal description of			
the relationship. Key	the relationship.	the relationship.			
features include:	Algebra I Key features	Algebra II Key features			
intercepts; intervals	include: intercepts;	include: intercepts;			
where the function is	intervals where the	intervals where the			
increasing, decreasing,	function is increasing,	function is increasing,			
positive, or negative;	decreasing, positive,	decreasing, positive,			
relative maximums	or negative; maxima,	or negative; relative			
and minimums;	minima; and	maxima and minima;			
symmetries; end	symmetries. <mark>Tasks</mark>	symmetries; end			
behavior; and	have a real-world	behavior; and			
periodicity.*	context and are	periodicity. <mark>Tasks may</mark>			
	limited to the	involve real-world			
	following functions:	context and may			
	linear, quadratic,	include polynomial,			
	square root, cube	exponential,			
	root, piece-wise	logarithmic, and			
	defined (including	trigonometric			

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
F-IF.5. Relate the	F-IF.B.5. Determine	•	•		NYS removed the example
domain of a function	the domain of a				and changed the wording
to its graph and,	function from its				involving the relationship
where applicable, to	graph and, where				between the domain and the
the quantitative	applicable, identify				quantitative relationship,
relationship it	the appropriate				which created a change in
describes. <i>For</i>	domain for a function				focus. The cluster is about
example, if the	in context.				functions that arise in
function h(n) gives the					context, but this standard
number of person-					makes it about the graph,
hours it takes to					rather then the function
assemble n engines in					itself. The context should
a factory, then the					drive the conversation about
positive integers					the domain, but that is not
would be an					the main emphasis here.
appropriate domain					There is no progression for
for the function. *					this requirement to the
					functions addressed in Alg II.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
F-IF.6. Calculate and	F-IF.B.6a. Calculate	F-IF.B.6b. Calculate	•	•	NYS included limitations and
interpret the average	and interpret the	and interpret the			a progression for Alg I and II.
rate of change of a	average rate of	average rate of			Neither course requires
function (presented	change of a function	change of a function			estimation of the rate of
symbolically or as a	presented over a	over a specified			change from a graph. This is a
table) over a specified	specified interval.	interval. <mark>Algebra II</mark>			change in focus.
interval. Estimate the	Algebra I tasks have a	tasks have a real-			
rate of change from a	real-world context	world context and			It is not clear how square and
graph.*	and are limited to the	may involve			cube root functions will be
	following functions:	polynomial,			approached in Alg I since
	linear, quadratic,	exponential,			higher order polynomials
	square root, cube	logarithmic, and			(cube) and inverse functions
	root, piece-wise	trigonometric			will not be addressed until Alg
	defined (including	functions.			П.
	step and absolute				
	value), and simple				
	exponential.				
Analyze functions	C. Analyze functions	C. Analyze functions			
using different	using different	using different			
representations	representations.	representations.			

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
F-IF.7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.*	functions expressed as an equation and show key features of the graph, by hand in	F-IF.C.7. Graph functions expressed as an equation and show key features of the graph, by hand in simple cases and using technology in more complicated cases. ★			NYS changed the wording slightly only in Alg I.
F-IF.7a Graph linear and quadratic functions and show intercepts, maxima, and minima.*	F-IF.C.7a. Graph linear, quadratic and simple exponential functions and show intercepts, maxima, and minima. Note: Graphing linear functions is a fluency expectation for Algebra I.				NYS added fluency to the requirement for Alg I.
F-IF.7b Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.*	F-IF.C.7b. Graph square root, cube root, and piecewise- defined functions, including step functions and absolute value functions.				It is not clear why this concept would be required in Alg I and not Alg II, where the graphs of inverse functions (square root and cube root) would be more appropriate.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
F-IF.7c Graph .		F-IF.C.7c. Graph			
polynomial functions,		polynomial functions,			
identifying zeros when		identifying zeros when			
suitable factorizations		suitable factorizations			
are available, and		are available, and			
showing end		showing end behavior.			
behavior.*					
F-IF.7d (+) Graph .				F-IF.C.7d+ Graph	
rational functions,				rational functions,	
identifying zeros and				identifying zeros and	
asymptotes when				asymptotes when	
suitable factorizations				suitable factorizations	
are available, and				are available, and	
showing end				showing end behavior.	
behavior.*				*	
F-IF.7e Graph .		F-IF.C.7e. Graph			
exponential and		exponential and			
logarithmic functions,		logarithmic functions,			
showing intercepts		showing intercepts			
and end behavior, and		and end behavior, and			
trigonometric		trigonometric			
functions, showing		functions, showing			
period, midline, and		period, midline, and			
amplitude.*		amplitude.			

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
F-IF.8. Write a	F-IF.C.8. Write a	F-IF.C.8. Write a	•		NYS does not clarify the
function defined by an	function in different	function in different			progression from Alg I to Alg
expression in different	but equivalent forms	but equivalent forms			П.
but equivalent forms	to reveal and explain	to reveal and explain			
to reveal and explain	different properties of	different properties of			
different properties of	the function.	the function.			
the function.					
F-IF.8a Use the	F-IF.C.8a. Use the				NYS changed "extreme value"
process of factoring	process of factoring				to "maxima, minima."
and completing the	and completing the				
square in a quadratic	square in a quadratic				
function to show	function to show				
zeros, extreme values,	zeros, <mark>maxima,</mark>				
and symmetry of the	<mark>minima,</mark> and				
graph, and interpret	symmetry of the				
these in terms of a	graph, and interpret				
context.	these in terms of a				
	context.				

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
F-IF.8b Use the		F-IF.C.8b. Use the			NYS removed the specific
properties of		properties of			example and added language
exponents to		exponents to			to describe types of problems
interpret expressions		interpret exponential			that should be addressed.
for exponential		functions, and classify			They also added the
functions. <i>For</i>		them as representing			classification part of the
example, identify		exponential growth or			example to the standard.
percent rate of		decay. Include real			Clarity is needed to
change in functions		world problems			determine whether
such as y = (1.02)^t, y		involving compound			"continuous interest" is
= (0.97)^t, y =		and continuous			intended to mean "interest
(1.01)^(12t), y =		interest.			compounded continuously."
(1.2)^(t/10), and					
classify them as					
representing					
exponential growth or					
decay.					

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
F-IF.9. Compare	F-IF.C.9a. Compare	F-IF.C.9b. Compare			It is not clear how square and
properties of two	properties of two	properties of two			cube root functions will be
functions each	functions each	functions each			approached in NYS Alg I since
represented in a	represented in a	represented in a			higher order polynomials
different way	different way	different way			(cube) and inverse functions
(algebraically,	(algebraically,	(algebraically,			will not be addressed until Alg
graphically,	graphically,	graphically,			П.
numerically in tables,	numerically in tables,	numerically in tables,			
or by verbal	or by verbal	or by verbal			
descriptions). For	descriptions). A1	descriptions).			
example, given a	Course: Tasks are	Algebra II tasks may			
graph of one	limited to the	involve polynomial,			
quadratic function	following functions:	exponential,			
and an algebraic	linear, quadratic,	logarithmic and			
expression for	square root, cube	trigonometric			
another, say which	root, piecewise	functions.			
has the larger	defined (including				
maximum.	step and absolute				
	value), and simple				
	exponential.				
Building Functions		Building Functions (F-			
		BF)			

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
Build a function that models a relationship between two quantities	A. Build a function that models a relationship between two quantities.	A. Build a function that models a relationship between two quantities. ★			The modeling indicator on this cluster would also apply to the Alg II standards below. (There is no indicator for Alg I so only those specifically identified will be modeling standards.)
F-BF.1. Write a function that describes a relationship between two quantities.*	F-BF.A.1. Write a function that describes a relationship between two quantities. ★ Algebra I Course is limited to linear, quadratic and simple exponential functions.	F-BF.A.1. Write a function that describes a relationship between two quantities.			NYS included limitations for Alg I but did not describe the progression for Alg II.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
F-BF.1a Determine an	F-BF.A.1a. Determine	F-BF.A.1a. Determine	•		NYS added language to define
explicit expression, a	a function from	a function from			the progression from Alg I to
recursive process, or	context.	context.			II.
steps for calculation	Algebra I: Define a	Algebra II: Determine			
from a context.*	sequence explicitly or	an explicit expression,			Note: NYS includes linear,
	steps for calculation	a recursive process, or			quadratic, and exponential
	from a context.	steps for calculation			functions in both Alg I and Alg
		from a context. Tasks			II standards. It is not clear
		may involve linear			how Alg II treatment of these
		functions, quadratic			functions will be different
		functions, and			from that of Alg I.
		exponential functions.			

NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
	F-BF-A.1b. Combine			
	standard function			
	types using arithmetic			
	operations. For			
	example, build a			
	function that models			
	the temperature of a			
	cooling body by			
	adding a constant			
	function to a decaying			
	exponential, and			
	relate these functions			
	to the model.			
	NYS ALG I	. F-BF-A.1b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions	. F-BF-A.1b. Combine . standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions	. F-BF-A.1b. Combine . . standard function . types using arithmetic . . operations. For . . example, build a . . function that models . . the temperature of a . . cooling body by . . adding a constant . . function to a decaying . . exponential, and . .

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
F-BF.1c (+) Compose	•	•	•	F-BF.A.1c+ Compose	
functions. For				functions. For	
example, if T(y) is the				example, if T(y) is the	
temperature in the				temperature in the	
atmosphere as a				atmosphere as a	
function of height,				function of height,	
and h(t) is the height				and h(t) is the height	
of a weather balloon				of a weather balloon	
as a function of time,				as a function of time,	
then T(h(t)) is the				then T(h(t)) is the	
temperature at the				temperature at the	
location of the				location of the	
weather balloon as a				weather balloon as a	
function of time.*				function of time. \star	
F-BF.2. Write		F-BF-A.2. Write	•		
arithmetic and		arithmetic and			
geometric sequences		geometric sequences			
both recursively and		both recursively and			
with an explicit		with an explicit			
formula, use them to		formula, use them to			
model situations, and		model situations, and			
translate between the		translate between the			
two forms.*		two forms.			
Build new functions	B. Build new	B. Build new			
from existing	functions from	functions from			
functions	existing functions.	existing functions.			

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
F-BF.3. Identify the effect on the graph of replacing $f(x)$ by $f(x)$ i i + k , $k f(x)$, $f(kx)$, and of $(x + k)$ for specific r values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.	F-BF.B.3a. Using f(x) + k, k f(x), and f(x + k): d) Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), and f(x + k) for specific values of k (both positive and negative); di) Find the value of k given the graphs; dii) Write a new function using the value of k; and fv) Use technology to experiment with cases and explore the	F-BF.B.3b. Using f(x) + k, k f(x), f(kx) and f(x + k): i) Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), and f(x + k) for specific values of k (both positive and negative); ii) Find the value of k given the graphs; iii) Write a new function using the value of k; and iv) Use technology to experiment with cases and explore the effects on the graph. A2 Course: Include recognizing even and odd functions from their graphs. Tasks may involve polynomial, exponential, logarithmic, and trigonometric functions.			NYS added progression information for Alg I and II, and a requirement to write new functions to both Alg I and II, and moved algebraic recognition of even and odd functions to the Plus standards. The intention for part iii is unclear. Will g(x)=k(f(x)) suffice? Will any new function work so long as it includes k? The postponement of the algebraic meaning of even/odd is a shift in focus. It is not clear how square and cube root functions will be approached in Alg I since higher order polynomials (cube) and inverse functions will not be addressed until Alg II.
F-BF.4. Find inverse .		F-BF.B.4. Find inverse	•		

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
F-BF.4a <mark>Solve</mark> an		F-BF.B.4a4a. Find the			NYS removed the
equation of the form		inverse of a one-to-			requirement to solve the
f(x) = c for a simple		one function both			equation with an inverse. NYS
function f that has an		algebraically and			needs to clarify what it means
inverse and write an		graphically.			to find the inverse of a
expression for the					function graphically.
inverse. For example,					
f(x) =2 x^3 or f(x) =					
$(x+1)/(x-1)$ for $x \neq 1$.					
F-BF.4b (+) Verify by		•		F-BF.B.4b+ Verify by	
composition that one				composition that one	
function is the inverse				function is the inverse	
of another.				of another.	
F-BF.4c (+) Read				F-BF.B.4c+ Given the	NYS changed the order and
values of an inverse				graph or table of an	some of the vocabulary in the
function from a graph				invertible function,	, wording of this standard, but
or a table, given that				determine	not the meaning or rigor of
the function has an				coordinates of its	this CCSS.
inverse.				inverse.	
F-BF.4d (+) Produce an				F-BF.B.4d+ Determine	NYS changed the wording
invertible function				an invertible function	slightly and referenced a
from a non-invertible				from a non-invertible	trigonometry standard as an
function by restricting				function by restricting	example.
the domain.				the domain. For	
				example: F.TF.B.6(+)	

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
F-BF.5 (+) Understand		F.BF.B.5a. Understand	•	F-BF.B.5+ 5b. Use	NYS added a progression to
the inverse		inverse relationships		inverse relationships	this (+) standard to Alg II.
relationship between		between exponents		to solve problems	
exponents and		and logarithms		involving logarithms	
logarithms and use		algebraically and		and exponents (+).	
this relationship to		graphically.			
solve problems					
involving logarithms					
and exponents.				F-BF.B.5+ 5c. Apply the properties of logarithms to rewrite logarithmic expressions in equivalent forms and solve logarithmic equations. (+)	NYS added this logarithmic requirement to the Plus course standards.
		F-BF.B.6a. Convert	•		This seems to be more
		between the			related to A-SSE than F-BF.
		expanded form of a			How are students building a
		series and summation			function, as expected of
		notation for the series			standards in this cluster?
		and evaluate.			Also, it is not clear from this
		6b. Write arithmetic			wording whether this
		and geometric series			addresses only finite series.
		in summation			[Note: the a and b parts are
		notation.			not listed as separate
					standards in the NYS.]

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
	Linear, Quadratic and	Linear, Quadratic and			The modeling indicator on
	Exponential Models	Exponential Models			this cluster would also apply
Linear, Quadratic, and	(F-LE) ★	(F-LE) ★			to the standards below.
Exponential Models*					
Construct and	A. Construct and				
compare linear,	compare linear,				
quadratic, and	quadratic, and				
exponential models	exponential models				
and solve problems	and solve problems.				
F-LE.1. Distinguish	F-LE.A.1. Distinguish				
between situations	between situations				
that can be modeled	that can be modeled				
with linear functions	with linear functions				
and with exponential	and with exponential				
functions.*	functions.				
F-LE.1a Prove that	F-LE.A.1a. Justify that				Justify seems the wrong verb
linear functions grow	linear functions grow				to use here. In this case it
by equal differences	by equal differences				might be better to use "show
over equal intervals,	over equal intervals,				that" or "demonstrate how
and that exponential	and that exponential				you know."
functions grow by	functions grow by				
equal factors over	equal factors over				
equal intervals.*	equal intervals.				

NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
F-LE.A.1b.Recognize	•	•		NYS added the requirement
when a model has a				to identify the model as
constant rate of				linear. It also lost the concept
change a <mark>nd identify</mark>				of the constant rate "per unit
the model as linear.				interval."
				Also, It is more precise to
				speak of the quantities in a
				model having a constant rate
				relationship. A constant rate
				is a relationship between
				varying quantities.
F-LE.A.1c. Recognize		•		NYS added the requirement
when a model has a				to identify the model as
constant percent rate				linear. It also lost the concept
of change and identify				of the percent rate "per unit
the model as				interval."
exponential.				Also, It is more precise to
				speak of the quantities in a
				model having a constant
				percent rate relationship. A
				constant percent rate is a
				relationship between varying
				quantities.
	F-LE.A.1b.Recognize when a model has a constant rate of change and identify the model as linear. F-LE.A.1c. Recognize when a model has a constant percent rate of change and identify the model as	F-LE.A.1b.Recognize . when a model has a . constant rate of . change and identify . the model as linear. . F-LE.A.1c. Recognize . when a model has a . constant percent rate . of change and identify the model as	F-LE.A.1b.Recognize . when a model has a . constant rate of . change and identify . the model as linear. . F-LE.A.1c. Recognize . when a model has a . constant percent rate . of change and identify .	F-LE.A.1b.Recognize . when a model has a constant rate of change and identify the model as linear. . F-LE.A.1c. Recognize . when a model has a constant percent rate of change and identify the model as a linear. .

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
F-LE.2. Construct	F-LE.A.2a. Construct a	F-LE.A.2b. Construct a	•		NYS added a limitation for Alg
linear and exponential	linear or exponential	linear, exponential,			I.
functions, including	function rule given:	arithmetic or			
arithmetic and	i) a graph;	geometric function			Note: NYS includes linear and
geometric sequences,	ii) a description of the	rule given:			exponential functions in both
given a graph, a	relationship; and	i) a graph;			Alg I and Alg II standards. It is
description of a	iii) two input-output	ii) a description of the			not clear how Alg II treatment
relationship, or two	pairs (include reading	relationship; and			of linear functions will be
input-output pairs	these from a table).	iii) two input-output			different from that of Alg I.
(include reading these	Simple exponential	pairs (include reading			
from a table).*	function limit for	these from a table).			
	Algebra I.				
F-LE.3. Observe using	F-LE.A.3. Observe				
graphs and tables that	using graphs and				
a quantity increasing	tables that a quantity				
exponentially	increasing				
eventually exceeds a	exponentially				
quantity increasing	eventually exceeds a				
linearly, quadratically,	quantity increasing				
or (more generally) as	linearly, quadratically,				
a polynomial	or (more generally) as				
function.*	a polynomial function.				

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
F-LE.4. For		F-LE.A.4. Use common			NYS changed the punctuation.
exponential models,		or natural logarithms			
express as a logarithm		to solve exponential			
the solution to		equations, such as			
$ab^{(ct)} = d$ where a ,		ab^ct = d where a,b, c,			
c, and d are numbers		and d are real			
and the base b is 2,		numbers. Evaluate the			
10, or <i>e</i> ; evaluate the		logarithm using			
logarithm using		technology.			
technology.*					
Interpret expressions	B. Interpret				
for functions in terms	expressions for				
of the situation they	functions in terms of				
model	the situation they				
	model.				
F-LE.5. Interpret the	F-LE.B.5. Interpret the	F-LE.B.5. Interpret the			NYS added a limitation on
parameters in a linear	parameters in a linear	parameters in a linear			exponential functions for Alg I
or exponential	or exponential	or exponential			and removed the modeling
function in terms of a	function in terms of a	function in terms of a			indicator on this standard.
context.*	context.	context.			
	Simple exponential				Note: NYS includes linear and
	function limit for				exponential functions in both
	Algebra I.				Alg I and Alg II standards. It is
					not clear how Alg II treatment
					of linear functions will be
					different from that of Alg I.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
Trigonometric					
Functions					
Extend the domain of		A. Extend the domain			
trigonometric		of trigonometric			
functions using the		functions using the			
unit circle		unit circle.			
E TE 4. Useda set a set					
F-TF.1. Understand		F-TF.A.1. Understand			•
radian measure of an		radian measure of an			
angle as the length of		angle as the length of			
the arc on the unit		the arc on the unit			
circle subtended by		circle subtended by			
the angle.		the angle.			
F-TF.2. Explain how .		F-TF.A.2. Apply			NYS changed "explain how"
the unit circle in the		concepts of the unit			to "apply concepts of" and
coordinate plane		circle in the			removed much of the CCSS
enables the extension		coordinate plane to			explanation and detail. In
of trigonometric		calculate the values of			doing so, the NYS
functions to all real		the six trigonometric			deemphasizes the extension
numbers, interpreted		functions given angles			of the functions to all real
as radian measures of		in radian measure.			numbers as well as the
angles traversed					continuous nature of the
counterclockwise					circular functions.
around the unit circle.					

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
F-TF.3. (+) Use special	•		F.TF.A.3 Use special		This NYS Geometry standard
triangles to determine			triangles to determine		is a partial match with the
geometrically the			geometrically the		CCSS (+) standard. NYS limits
values of sine, cosine,			values of sine, cosine		angle measures to degrees
tangent for $\pi/3$, $\pi/4$			and tangent for 30, 45		and the unit circle to
and $\pi/6$, and use the			and 60 degrees. Use		quadrants 1 and 2. This
unit circle to express			the special triangles		change may have created a
the values of sine,			with the unit circle to		coherence issue: Will
cosine, and tangent			find the values for		students be taking Geometry
for $\pi - x$, $\pi + x$, and			sine, cosine and		before Alg II? If so, how will
$2\pi - x$ in terms of			tangent of <mark>30, 45, 60,</mark>		they use the unit circle? This
their values for x ,			120, 135 and 150		standard may need further
where x is any real			degrees.		reduction and an expanded
number.			Note: Side lengths		version for Alg II.
			could be given in		
			radical form.		
			Eliminate (+)		
F-TF.4. (+) Use the		F-TF.A.4+. Use the			In NYS F-BF.B.3, odd and even
unit circle to explain		unit circle to explain			functions are moved to Plus
symmetry (odd and		symmetry (odd and			standards. Putting this CCSS
even) and periodicity		even) and periodicity			(+) in Alg II presents a
of trigonometric		of trigonometric			progression problem.
functions.		functions.			

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
Model periodic .		B. Model periodic			The modeling indicator on
phenomena with		phenomena with			this cluster would also apply
trigonometric		trigonometric			to the standards below.
functions		functions. ★			
F-TF.5. Choose .		F-TF.B.5. Choose			
trigonometric		trigonometric			
functions to model		functions to model			
periodic phenomena		periodic phenomena			
with specified		with specified			
amplitude, frequency,		amplitude, frequency,			
and midline.*		and midline.			
F-TF.6. (+) Understand .				F-TF.B.6+ Understand	NYS added a modeling
that restricting a				that restricting a	indicator to this cluster, and
trigonometric				trigonometric	so to this standard. The
function to a domain				function to a domain	modeling aspect of this
on which it is always				on which it is always	standard should be clearly
increasing or always				increasing or always	explained. This standard is
decreasing allows its				decreasing allows its	used as an example in NYS F-
inverse to be				inverse to be	BF.4d.
constructed.				constructed.	

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
F-TF.7. (+) Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions using technology, and interpret them in				F-TF.B.7+ Use inverse functions to solve trigonometric equations that arise in modeling contexts, evaluate the solutions using technology, and interpret them in	
terms of the context.* Prove and apply trigonometric	•			terms of the context. C. Prove and apply trigonometric	
identities F-TF.8. Prove the		F-TF.8a. Prove the		identities.	
Pythagorean identity $sin^2(\theta) + cos^2(\theta) = 1$ and use it to find		Pythagorean identity sin^2(θ) + cos^2(θ) = 1.	•		
sin(θ), cos(θ), or tan(θ) given sin(θ), cos(θ), or tan(θ) and the quadrant of the angle.		F-TF.8b. Find the value of any of the six trigonometric functions given any other trigonometric function value.			NYS removed the part about the quadrant of the angle, which removes the connection to the unit circle and makes this mathematically impossible. What is THE value of cos(t) when $sin(t) = -(1/2)$? There are two possibilities within the interval [0, 360].

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
F-TF.9. (+) Prove the				F-TF.C.9+ Prove the	
addition and				addition and	
subtraction formulas				subtraction formulas	
for sine, cosine, and				for sine, cosine, and	
tangent and use them				tangent and use them	
to solve problems.				to solve problems.	
GEOMETRY					
Congruence				•	•
Experiment with			A. Experiment with		
transformations in			transformations in		
the plane			the plane.		
G-CO.1. Know precise			G.CO.A.1. Know		The NYS added clarification
definitions of angle,			precise definitions of		about the figures.
circle, perpendicular			angle, circle,		
line, parallel line, and			perpendicular lines,		
line segment, based			parallel lines, and line		
on the undefined			segment, based on		
notions of point, line,			the undefined notions		
distance along a line,			of point, line, distance		
and distance around a			along a line, and		
circular arc.			distance around a		
			circular arc as these		
			exist within a plane.		

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
G-CO.2. Represent	•	•	G.CO.A.2. Represent .		The usage of the phrase
transformations in the			transformations as		"representgeometric
plane using, e.g.,			geometric functions		functions" is unclear,
transparencies and			that take points in the		undefined, and implies some
geometry software;			plane as inputs and		new kind of function. In the
describe			give other points as		CCSS, the notion of function is
transformations as			outputs. Compare		invariant, using inputs and
functions that take			transformations that		outputs. If the intent is to
points in the plane as			preserve distance and		represent geometric
inputs and give other			angle measure to		transformations as functions,
points as outputs.			those that do not		it should be phrased that
Compare			(e.g., translation		way. This clarification is
transformations that			versus horizontal		needed to ensure there is
preserve distance and			stretch). Note: Use a		consistent understanding and
angle to those that do			variety of strategies		application of that term.
not (e.g., translation			which include		
versus horizontal			transparencies and		
stretch).			software programs.		
G-CO.3. Given a			G.CO.A.3. Given a .		NYS modified the descriptions
rectangle,			regular <mark>or irregular</mark>		of the shapes but does not
parallelogram,			polygon, describe the		specifically call for rectangles,
trapezoid, or regular			rotations and		parallelograms, or trapezoids.
polygon, describe the			reflections that carry		A definition for "irregular
rotations and			it onto itself.		polygon" may be needed in
reflections that carry					this case.
it onto itself.					

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
G-CO.4. Develop .			G.CO.A.4. Develop .		NYS added "points" to the
definitions of			definitions of		terms, presumably to include
rotations, reflections,			rotations, reflections,		image points.
and translations in			and translations in		
terms of angles,			terms of <mark>points,</mark>		
circles, perpendicular			angles, circles,		
lines, parallel lines,			perpendicular lines,		
and line segments.			parallel lines, and line		
			segments.		
					NIVC as a set the supervisit to the set
G-CO.5. Given a .			G.CO.A.5. Given a		NYS moved the example to a
geometric figure and a			geometric figure and a		note and changed the
rotation, reflection, or			rotation, reflection, or		punctuation between the
translation, draw the			translation, draw the		statements.
transformed figure			transformed figure.		T
using, e.g., graph			Specify a sequence of		Typo: The note is missing a
paper, tracing paper,			transformations that		verb so is not a complete
or geometry software.			will carry a given		sentence. Removing "which
Specify a sequence of transformations that			figure onto another.		could" would be a possible
			Note: Drawing tools, which could include		repair for this typo.
will carry a given					
figure onto another.			graph paper, tracing		
			paper and geometry		
			software.		
Understand .		•	B. Understand		
congruence in terms			congruence in terms		
of rigid motions			of rigid motions.		

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
G-CO.6. Use	•		G.CO.B.6. Use		NYS changed the punctuation
geometric			geometric		between the two statements
descriptions of rigid			descriptions of rigid		and added a limitation in the
motions to transform			motions to transform		note. The definition of
figures and to predict			figures and to predict		congruence was modified in
the effect of a given			the effect of a given		Grade 8 to avoid defining
rigid motion on a			rigid motion on a		congruence through
given figure; given			given figure. Given		transformations. Either this
two figures, use the			two figures, use the		standard or the Grade 8
definition of			definition of		standard needs to be
congruence in terms			congruence in terms		changed to restore coherence.
of rigid motions to			of rigid motions to		
decide if they are			decide if they are		Clarity: How will the center of
congruent.			congruent. Note:		the transformation be
			With rotations, the		specified? Is this something
			center of the		the student must do or must
			transformation must		it be part of the elements
			be specified.		provided in the task?

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
G-CO.7. Use the	•		G.CO.B.7. Use the		
definition of			definition of		
congruence in terms			congruence in terms		
of rigid motions to			of rigid motions to		
show that two			show that two		
triangles are			triangles are		
congruent if and only			congruent if and only		
if corresponding pairs			if corresponding pairs		
of sides and			of sides and		
corresponding pairs of			corresponding pairs of		
angles are congruent.			angles are congruent.		
G-CO.8. Explain how	•		G.CO.B.8. Explain how		
the criteria for			the criteria for		
triangle congruence			triangle congruence		
(ASA, SAS, and SSS)			(ASA, SAS, and SSS)		
follow from the			follow from the		
definition of			definition of		
congruence in terms			congruence in terms		
of rigid motions.			of rigid motions.		
Prove geometric	•		C. Prove geometric		
theorems			theorems.		

NYS added "and apply" to the requirement and provides a note with an explanation of the types and scope of the proofs. The phrase "algebraic problems built upon these concepts" is vague and will need clarification.
note with an explanation of the types and scope of the proofs. The phrase "algebraic problems built upon these concepts" is vague and will need clarification.
the types and scope of the proofs. The phrase "algebraic problems built upon these concepts" is vague and will need clarification.
proofs. The phrase "algebraic problems built upon these concepts" is vague and will need clarification.
The phrase "algebraic problems built upon these concepts" is vague and will need clarification.
problems built upon these concepts" is vague and will need clarification.
concepts" is vague and will need clarification.
need clarification.
NYS used the CCSS examples
of possible proofs to create
this separate standard. If this
separate NYS standard is
taken without its stem, it will
not necessarily be clear that
this is about lines and angles.
The sub points of this
standard have different levels
of specificity, and the overall
structure is unclear, in that
"vertical angles" is not a
"relationship."

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
G-CO.10. Prove		•	G.CO.C.10. Prove and		NYS added "and apply" to the
theorems about			apply theorems about		requirement and provides a
triangles. Theorems			triangles. Note:		note with an explanation of
include: measures of			Include multi-step		the types and scope of the
interior angles of a			proofs and algebraic		proofs. Specificity: The phrase
triangle sum to 180°;			problems built upon		"algebraic problems built
base angles of			these concepts.		upon these concepts" is
isosceles triangles are					vague and will need
congruent; the					clarification.
segment joining					
midpoints of two		•	G.CO.C.10a. Prove and		NYS used the CCSS examples
sides of a triangle is			apply theorems about		of possible proofs to create
parallel to the third			angle relationships,		this separate standard. The
side and half the			specifically:		NYS version focuses on the
length; the medians			i. Interior angles sum		angles associated with
of a triangle meet at			to 180 degrees.		triangles. If this separate NYS
a point.			ii. Exterior angles sum		standard is taken without its
			to 360 degrees.		stem, it will not necessarily
			iii. The measure of an		be clear that this is about
			exterior angle of a		triangles (except for the
			triangle is equal to the		mention in sub part iii).
			sum of the measures		
			of its two non-		
			adjacent interior		
			angles of the triangle.		

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
			G.CO.C.10b. Prove		NYS made one of the CCSS
			and apply theorems		examples into this separate
			about isosceles		standard.
			triangles.		
			G.CO.C.10c. Prove and		NYS made one of the CCSS
			apply theorems about		examples into this separate
			the mid-segment of a		standard.
			triangle (parallel to		Clarity: It is not clear from
			the third side and half		this standard whether the
			the length).		parenthetical is
					comprehensive or whether
					other theorems beyond those
					mentioned would be allowed.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
G-CO.11. Prove			G.CO.C.11. Prove and		NYS added "and apply" to this
theorems about			apply theorems about		performance requirement
parallelograms.			parallelograms. Note:		and also added notes to
Theorems include:			Include multi-step		explain the scope of the proof
opposite sides are			proofs and algebraic		and to clarify the definition of
congruent, opposite			problems built upon		trapezoid. NYS also used the
angles are congruent,			these concepts.		CCSS examples of possible
the diagonals of a			Note: Based on the		proofs to create separate
parallelogram bisect			inclusive definition of		standards.
each other, and			a trapezoid		
conversely, rectangles			(specifically a		
are parallelograms			quadrilateral with at		
with congruent			least one pair of		
diagonals.			parallel sides), a		
			parallelogram is a		
			trapezoid.		
1					

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
			G.CO.C.11a. Prove and .		NYS used the CCSS examples
			apply theorems about		of possible proofs to create
			properties which		separate standards. If this
			include opposite sides		separate NYS standard is
			are congruent,		taken without its stem, it will
			opposite angles are		not necessarily be clear that
			congruent and that		this is about parallelograms.
			the diagonals bisect		Typo: In the beginning it
			each other.		appears that "properties"
					should be "parallelograms."
					Or perhaps it should read,
					"about the properties of
					parallelograms?"
			G.CO.C.11b. Prove .		This NYS seems to be
			and apply theorems		subsumed by the previous
			about <mark>special</mark>		one. All the properties in the
			parallelograms and		example for G.CO.C11a are of
			the properties that		"special parallelograms." NYS
			distinguish them.		will need to define special
					parallelograms.
Make geometric			D. Make geometric		
constructions			constructions.		

NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
•	•	G.CO.D.12. Make		NYS added fluency with
		formal geometric		construction and a note to
		constructions while		include the CCSS examples for
		developing fluency		possible tools and methods.
		with the use of		
		construction tools.		
		Note: Use a variety of		
		tools and methods for		
		construction, which		
		include compass and		
		straightedge, string,		
		reflective devices,		
		paper folding,		
		dynamic geometric		
		software, etc.		
		12a Convisegments		
•	•			
	•	-	•	
		12c Construct		The NYS requirement goes
•	•			beyond constructing the
				perpendicular bisector.
				perpendicular biscetor.
	NYS ALG I	NYS ALG I NYS ALG II G.CO.D.12. Make formal geometric constructions while developing fluency with the use of construction tools. <i>Note:</i> Use a variety of tools and methods for construction, which include compass and straightedge, string, reflective devices, paper folding, dynamic geometric	. G.CO.D.12. Make formal geometric constructions while developing fluency with the use of construction tools. Note: Use a variety of tools and methods for construction, which include compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc. . 12a. Copy segments and angles. . 12b. Bisect segments and angles. . 12c. Construct perpendicular lines including through a point on or off a given

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
			12d. Construct a line .		
			parallel to a given line		
			through a point not		
			on the line.		
			12e. Construct an .		NYS added this specific
			isosceles triangle with		construction requirement.
			given lengths.		
			12f. Construct points .		NYS added this specific
			of concurrency of a		construction requirement.
			triangle (centroid,		
			circumcenter, and		
			incenter).		
G-CO.13. Construct an			G.CO.D.13. Construct .		NYS added this specific
equilateral triangle, a			an equilateral triangle,		construction requirement.
square, and a regular			a square, and a		
hexagon inscribed in a			regular hexagon		
circle.			inscribed in a circle.		
Similarity, Right					
Triangles, and					
Trigonometry					
Understand similarity			A. Understand		
in terms of similarity			similarity in terms of		
transformations			similarity		
			transformations.		

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
G-SRT.1 Verify experimentally the properties of dilations given by a center and a scale factor: a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged. b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor.	•		G.SRT.A.1. Verify experimentally the properties of dilations given by a center and a scale factor. G.SRT.A.1a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.		NYS removed the colon on this stem statement and split the CCSS into separate standards. If they are to stand alone as performance objectives, revision is needed to make the descriptive statements of the original CCSS describe student performance. This sub part is a definition and does not describe student performance.
			G.SRT.A.1b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor.		This sub part is a definition and does not describe student performance.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
G-SRT.2. Given two			G.SRT.A.2. Given two		NYS added a limitation note
figures, use the			figures, use the		to require the center of
definition of similarity			definition of similarity		dilations and rotations be
in terms of similarity			in terms of similarity		given. The definition of
transformations to			transformations to		similarity was modified in
decide if they are			decide if they are		Grade 8 to avoid defining
similar; explain using			similar. Explain using		similarity through
similarity			similarity		transformations. Either this
transformations the			transformations the		standard or the Grade 8
meaning of similarity			meaning of similarity		standard needs to be
for triangles as the			for triangles as the		changed to restore coherence.
equality of all			equality of all		
corresponding pairs of			corresponding pairs of		Clarity: How will the center of
angles and the			angles and the		the transformation be
proportionality of all			proportionality of all		specified? Is the standard
corresponding pairs of			corresponding pairs of		stating that this is something
sides.			sides. Note: With		the student must do? Or
			dilations or rotations,		must it be part of the
			the center of the		elements provided in the
			transformation must		task?
			be specified.		

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
G-SRT.3. Use the .			G.SRT.A.3. Use the .		
properties of			properties of		
similarity			similarity		
transformations to			transformations to		
establish the AA			establish the AA		
criterion for two			criterion for two		
triangles to be similar.			triangles to be similar.		
Prove theorems .			B. Prove theorems		
involving similarity			involving similarity.		
G-SRT.4. Prove .			G.SRT.B.4. Prove and		NYS added "and apply" to the
theorems about			apply theorems about		requirement and provides a
triangles. Theorems			triangles.		note with an explanation of
include: a line parallel			Note: Include multi-		the types and scope of the
to one side of a			step proofs and		proofs.
triangle divides the			algebraic problems		
other two			built upon these		
proportionally, and			concepts.		
conversely; the .			G.SRT.B.4a. Prove that .		NYS used the CCSS examples
Pythagorean Theorem			a line parallel to one		of possible proofs to create
proved using triangle			side of a triangle		this separate standard.
similarity.			divides the other two		
			proportionally, and		
			conversely.		

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
	•		G.SRT.B.4b. Prove that the length of the altitude drawn from the vertex of the right angle of a right triangle to its hypotenuse is the geometric mean between the lengths of the two segments of the hypotenuse.		NYS added this to the list of examples of proofs about triangles.
	•		G.SRT.B.4c. Prove the Pythagorean Theorem using triangle similarity.	•	NYS used the CCSS examples of possible proofs to create this separate standard.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
G-SRT.5. Use			G.SRT.B.5. Use		NYS added "algebraically and
congruence and			congruence and		geometrically" to the
similarity criteria for			similarity criteria for		problem solving strategies
triangles to solve			triangles with fluency		and added a note to identify
problems and to			to:		the theorems to be used in
prove relationships in			a. solve problems		proofs. They also added a
geometric figures.			algebraically and		fluency requirement.
			geometrically.		
			b. prove relationships		
			in geometric figures.		
			Note: ASA, SAS, SSS,		
			AAS, and		
			Hypotenuse-Leg (HL)		
			theorems are valid		
			criteria for triangle		
			congruence. AA, SAS,		
			and SSS are valid		
			criteria for triangle		
			similarity.		
Define trigonometric			C. Define		
ratios and solve			trigonometric ratios		
problems involving			and solve problems		
right triangles			involving right		
			triangles.		

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
G-SRT.6. Understand .			G.SRT.C.6. Understand .		NYS limited "trigonometric
that by similarity, side			that by similarity, side		ratios" to sine, cosine, and
ratios in right triangles			ratios in right triangles		tangent.
are properties of the			are properties of the		
angles in the triangle,			angles in the triangle,		
leading to definitions			leading to definitions		
of trigonometric ratios			of sine, cosine and		
for acute angles.			tangent ratios for		
			acute angles.		
G-SRT.7. Explain and .			G.SRT.C7. Explain and		
use the relationship			use the relationship		
between the sine and			between the sine and		
cosine of			cosine of		
complementary			complementary		
angles.			angles.		
G-SRT.8. Use .			G.SRT.C.8. Use sine,		NYS limited "trigonometric
trigonometric ratios			cosine and tangent as		ratios" to sine, cosine, and
and the Pythagorean			well as the		tangent.
Theorem to solve			Pythagorean Theorem		Ŭ
right triangles in			to solve right triangles		
applied problems.*			in applied problems. ★		
Apply trigonometry			D. Apply		
to general triangles			Trigonometry to		
- •			general triangles.		

NYS eliminated the (+) on this CCSS and addressed the concept in the Geometry course. The CCSS requirement to "derive" was changed to "explore the
concept in the Geometry course. The CCSS requirement to "derive" was
course. The CCSS requirement to "derive" was
requirement to "derive" was
changed to "explore the
changed to explore the
derivation."
-

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
G-SRT.10. (+) Prove		•	G.SRT.D.10 Explore	G-SRT.D.11a + Prove	For the purposes of using this
the Laws of Sines and			the proofs and apply	the Law of Sines and	CCSS (+) standard in the
Cosines and use them			the Laws of Sines*	the Law of Cosines	Geometry course, NYS
to solve problems.			and Cosines to solve	and apply in all cases	changed "prove" to "explore
			problems.	including the	the proofs" and added a note
			*The ambiguous case	ambiguous case and	to explain the limitations.
			for Law of Sines (given	resultant forces. ★	They also note that the (+) is
			one angle and two		to be removed. Since the
			sides, find the other		proof is addressed in the Plus
			angle) is NOT		standards, this CCSS (+) is
			addressed in this		fully aligned in the NYS.
			course.		
			Eliminate (+)		NYS added a modeling
					indicator to the Plus standard.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
G-SRT.11. (+)	•	•	G.SRT.D. 11	G-SRT.D.11a + Prove	In the Geometry course
Understand and apply			Understand and apply	the Law of Sines and	version of this standard, a
the Law of Sines and			the Law of Sines and	the Law of Cosines	limitation is provided and the
the Law of Cosines to			the Law of Cosines to	and apply in all cases	(+) removed. There is not a
find unknown			find unknown	including the	clear distinction between
measurements in right			measurements in any	ambiguous case and	G.SRT.D.10 and G.SRT.D11 in
and non-right			triangle. At this level,	resultant forces. ★	the geometry standards.
triangles (e.g.,			force diagrams should		NYS added a modeling
surveying problems,			not be included. ★		indicator to this standard.
resultant forces).			Eliminate (+)		Perhaps an explanation is
					needed to ensure
					understanding of how
					mathematical modeling will
					be applied to this standard.
					NYS added a modeling
					indicator to both the
					Geometry and Plus versions
					of this standard.
Circles					
Understand and apply			A. Understand and		
theorems about			apply theorems about		
circles			circles.		
G-C.1. Prove that all			G.C.A.1. Prove that all		
circles are similar.			circles are similar.		

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
G-C.2. Identify and			G.C.A.2. Identify,		NYS added "and apply" and
describe relationships			describe and apply		changed this stem to a
among inscribed			geometric properties		separate standard that
angles, radii, and			of circles.		generally addresses the
chords. Include the					properties of circles.
relationship between					Measurability: If this standard
central, inscribed, and					is considered without its sub
circumscribed angles;					parts, it is too broad and
inscribed angles on a					vague to know how to
diameter are right					measure student
angles ; the radius of					performances.
a circle is					Specificity: This standard is
perpendicular to the					too vague. What properties
tangent where the					of circles are intended, that
radius intersects the					are not also a part of things
circle.					specified in G.C.A.2a?

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
			G.C.A.2a. Identify,	•	NYS added specific
			describe and apply		requirements about the
			relationships among		angles and arcs of a circle. In
			angles <mark>and</mark>		the current NYS (2016), this
			intercepted arcs,		was not listed as a separate
			specifically:		standard. If this separate NYS
			i. central		standard was to be taken
			ii. inscribed		without its stem, it will not be
			iii. circumscribed		immediately clear that this is
			iv. angles and arcs		about circles.
			formed by any		Clarity: The language of this
			combination of		NYS is unclear. Which
			intersecting tangents,		relationships? The first bullet
			secants or chords.		only lists "central" which is
					not a relationship. Does this
					intend "relationship between
					central, inscribed, and
					circumscribed angles?" If so,
					why change the language to
					something less precise?
					Specificity: The specificity of
					the last item doesn't match
					the other items.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
	•	•	G.C.A.2b. Identify, .		NYS added tangents and
			describe and apply		secants to the list of
			relationships among		segments of a circle. In the
			segments, specifically:		current NYS, this is not a
			i. radii		separate standard. If this
			ii. chords		separate NYS standard is
			iii. tangents		taken without its stem, it will
			iv. secants		not be immediately clear that
					this is about circles.
					Clarity: It not clear what is
					meant by "relationships
					among segments" that are
					related to radii? What does
					that mean?
G-C.3. Construct the	•		G.C.A.3. Prove .		NYS removed the
inscribed and			properties of angles		construction requirements.
circumscribed circles			for a quadrilateral		
of a triangle, and			inscribed in a circle.		
prove properties of					
angles for a					
quadrilateral inscribed					
in a circle.					
G-C.4. (+) Construct a			G.C.A.4 Construct a .		NYS addressed this CCSS (+)
tangent line from a			tangent line from a		standard in Geometry,
point outside a given			point outside a given		eliminating the (+) but not
circle to the circle.			circle to the circle.		limiting the scope.
			Eliminate (+)		

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
Find arc lengths and .			B. Find arc lengths		
areas of sectors of			and areas of sectors		
circles			of circles.		
G-C.5. Derive using . similarity the fact that			G.C.B.5. Using proportionality, find		NYS only vaguely matched the CCSS counterpart here,
the length of the arc			one of the following		but drastically reduced the
intercepted by an			given two others: the		scope by eliminating the
angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.			central angle, arc length, radius or area of sector.		requirement to "derive." The work in the CCSS standard was to establish that radian measure, through proportionality, follows directly from the previous work. This NYS removes the key part of the standard and focuses instead on finding an unknown quantity. Radians are completely absent in the NYS.
Expressing Geometric Properties with Equations					

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
Translate between the geometric description and the equation for a conic section			A. Translate between the geometric description and the equation of a conic section.		
G-GPE.1 Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.			G.GPE.A.1. Derive the equation of a circle of given center and radius using the Pythagorean Theorem. Complete the square to find the center and radius of a circle given by an equation.		NYS changed the punctuation between the two statements.
G-GPE.2 Derive the equation of a parabola given a focus and directrix.				G-GPE.A.2+ Explore the relationship among the parabola, focus, and directrix and use the equation to model a real life situation.	NYS moved this non-(+) CCSS to Plus course and added a modeling indicator. It will be important to provide an explanation as to how this standard will be used to model with mathematics.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
G-GPE.3 (+) Derive the	•			G.GPE.A.3+ Derive	NYS added a modeling
equations of ellipses				the equations of	indicator. It will be important
and hyperbolas given				ellipses and	to provide an explanation as
the foci, using the fact				hyperbolas given the	to how this standard will be
that the sum or				foci and use the	used to model with
difference of				equations to model	mathematics.
distances from the				real life situations. ★	
foci is constant.					
Use coordinates to			B. Use coordinates to		
prove simple			prove simple		
geometric theorems			geometric theorems		
algebraically			algebraically.		
G-GPE.4. Use			G.GPE.B.4. On the		NYS added "and apply" and a
coordinates to prove			coordinate plane		fluency requirement. The
simple geometric			algebraically prove		CCSS examples were used to
theorems			and apply with fluency		create separate sub
algebraically. For			geometric theorems		standards.
example, prove or			and properties.		
disprove that a figure					
defined by four given			G.GPE.B.4a. Given		NYS used the CCSS examples
points in the			points and/or		to create this separate
coordinate plane is a			characteristics, prove		standard.
rectangle; prove or			or disprove a polygon		
disprove that the			is a specified		
point (1, √3) lies on			quadrilateral or		
the circle centered at			triangle based on its		
the origin and			properties.		
containing the point					

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
(0, 2).			G.GPE.B.4b. Given a .		NYS used the CCSS examples
			point that lies on a		to create this separate
			circle centered at the		standard, including a note to
			origin, prove or		explain the scope of the
			disprove that a		requirement.
			specified point lies on		
			the same circle. Note:		
			coordinates of points		
			could be given in		
			radical form.		
G-GPE.5. Prove the .			G.GPE.B.5. On the .		NYS changed "prove" to
slope criteria for			coordinate plane:		"explore the proof " and
parallel and			i) <mark>explore</mark> the proof		added fluency to the
perpendicular lines			for the relationship		requirement. Parts ii and iii
and use them to solve			between slopes of		are connected to the CCSS
geometric problems			parallel and		examples.
(e.g., find the			perpendicular lines;		
equation of a line			ii) fluently determine		
parallel or			if lines are parallel,		
perpendicular to a			perpendicular, or		
given line that passes			neither, based on		
through a given point).			their slopes; and		
			iii) fluently apply		
			properties of parallel		
			and perpendicular		
			lines to solve		
			geometric problems.		

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
G-GPE.6. Find the point on a directed line segment between two given points that partitions the segment in a given ratio.			G.GPE.B.6. Find the point on a directed line segment between two given points that partitions the segment in a given ratio.		
G-GPE.7. Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.*			G.GPE.B.7. Use coordinates with fluency to compute perimeters of polygons and areas of triangles and rectangles.★ Note: Values may be given or computed in radical form.		NYS added fluency and a modeling indicator and removed the CCSS example. The added note provides an explanation of the scope of the requirement.
Geometric Measurement and Dimension		•			
Explain volume formulas and use them to solve problems			A. Explain volume formulas and use them to solve problems.		

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
G-GMD.1. Give an	•	•	G.GMD.A.1. Explore	•	NYS changed "give" to
informal argument for			informal arguments		"explore."
the formulas for the			for the formulas for		
circumference of a			the circumference of a		
circle, area of a circle,			circle, area of a circle,		
volume of a cylinder,			volume of a cylinder,		
pyramid, and cone.			pyramid, and cone.		
Use dissection					
arguments, Cavalieri's					
principle, and informal					
limit arguments.					
G-GMD.2. (+) Give an				•	NYS stated that this concept
informal argument					belongs in integral calculus.
using Cavalieri's					EngageNY Precalculus
principle for the					materials for Lesson 9 of
formulas for the					Module 3 clearly illustrate
volume of a sphere					this is not the case.
and other solid figures.					
G-GMD.3. Use volume			G.GMD.A.3. Use		
formulas for cylinders,			volume formulas for		
pyramids, cones, and			cylinders, pyramids,		
spheres to solve			cones, and spheres to		
problems.*			solve problems. ★		

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
Visualize .			B. Visualize		
relationships			relationships		
between two-			between two-		
dimensional and			dimensional and		
three- dimensional			three-dimensional		
objects			objects.		
G-GMD.4. Identify the .			G.GMD.B.4. Identify .		NYS used slightly different
shapes of two-			the shapes of <mark>plane</mark> -		vocabulary and added a note
dimensional cross-			sections of three-		to explain the scope of the
sections of three-			dimensional objects,		requirement.
dimensional objects,			and identify three-		
and identify three-			dimensional objects		NOTE: This will be the first
dimensional objects			generated by		time NY students see non-
generated by			rotations of two-		parallel or perpendicular
rotations of two-			dimensional objects.		cross-sections. In Gr 7
dimensional objects.			Note: Plane sections		(7.G.A.3), they were
			are not limited to		specifically excluded.
			being parallel or		
			perpendicular to the		
			base.		
Modeling with			Modeling with .		The modeling indicator on
Geometry*			Geometry (G-MG) ★		this cluster would also apply
,					to the standards below.
Apply geometric			A. Apply geometric		
concepts in modeling			concepts in modeling		
situations			situations.		

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
G-MG.1. Use	•	•	G.MG.A.1. Use		NYS removed the CCSS
geometric shapes,			geometric shapes,		examples.
their measures, and			their measures, and		
their properties to			their properties to		
describe objects <mark>(e.g.,</mark>			describe objects.		
modeling a tree trunk					
or a human torso as a					
cylinder).*					
G-MG.2. Apply			G.MG.A.2. Apply		NYS removed the CCSS
concepts of density			concepts of density		examples. Clarity: How would
based on area and			based on area and		one "apply conceptsusing
volume in modeling			volume in modeling		geometric figures?"
situations <mark>(e.g.,</mark>			situations using		
persons per square			geometric figures.		
mile, BTUs per cubic					
foot).*					

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
G-MG.3. Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).*			G.MG.A.3. Apply geometric methods to solve design problems. <i>Note: Applications</i> <i>could include</i> <i>designing an object or</i> <i>structure to satisfy</i> <i>physical constraints</i> <i>or minimize cost, or</i> <i>to investigate</i> <i>applications of</i> <i>classical geometric</i> <i>problems like the</i> <i>Golden Ratio.</i>		NYS changed the examples. Clarity: The "Golden Ratio" is not a "problem." The intent here is not clear.
STATISTICS AND PROBABILITY	Statistics and Probability	Statistics and Probability ★			NYS added a modeling indicator to this domain title for Alg II, inferring that all standards below are to be taught in a modeling context. An explanation of how modeling should be approached in this domain is needed, especially since the same treatment was not required in Alg I.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
Interpreting	Interpreting	Interpreting			NYS added a modeling
Categorical and	categorical and	categorical and			indicator to the cluster title,
Quantitative Data	quantitative data (S-	quantitative data (S-			which would apply to all
	ID)	ID) ★			standards below. The
					modeling connection should
					be made more clear since it is
					not required in Alg I.
Summarize,	A. Summarize,	•	•		
represent, and	represent, and				
interpret data on a	interpret data on a				
single count or	single count or				
measurement variable	measurement				
	variable.				
S-ID.1. Represent data	S-ID.A.1. Represent	•	•		
with plots on the real	data with plots on the				
number line (dot	real number line (dot				
plots, histograms, and	plots, histograms, and				
box plots).	box plots).				

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
S-ID.2. Use statistics	S-ID.A.2. Use statistics				
appropriate to the	appropriate to the				
shape of the data	shape of the data				
distribution to	distribution to				
compare center	compare center				
(median, mean) and	(median, mean) and				
spread (interquartile	spread (inter-quartile				
range, standard	range, standard				
deviation) of two or	deviation) of two or				
more different data	more different data				
sets.	sets.				
S-ID.3. Interpret	S-ID.A.3. Interpret				
differences in shape,	differences in shape,				
center, and spread in	center, and spread in				
the context of the	the context of the				
data sets, accounting	data sets, accounting				
for possible effects of	for possible effects of				
extreme data points	extreme data points				
(outliers).	(outliers).				

NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
	S-ID.A.4. Use the			Since the header for this
	mean and standard			domain in Alg II includes a
	deviation of a data set			modeling indicator, it is
	to fit it to a normal			assumed that this standard
	distribution and to			would also require modeling.
	estimate population			The connection to
	percentages.			mathematical modeling
	Recognize that there			should be made more clear.
	are data sets for			
	which such a			
	procedure is not			
	appropriate. Use			
	calculators,			
	spreadsheets, and			
	tables to estimate			
	areas under the			
	normal curve.			
B. Summarize,	B. Summarize,			NYS added a modeling
-	represent, and			indicator to the domain title
•	•			for Alg II, which would apply
•				to all Alg II standards below.
•	•			The modeling connection
-	-			should be made more clear
				since it is not required in Alg I.
r i	3. Summarize, represent, and nterpret data on two categorical and	 mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve. Summarize, represent, and nterpret data on two 	 mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve. Summarize, represent, and interpret data on two categorical and 	mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and

D.B.5. Summarize egorical data for o categories in two- y frequency tables. erpret relative				•
o categories in two- y frequency tables. erpret relative				
y frequency tables. erpret relative				
erpret relative				
quencies in the				
quencies in the				
ntext of the data				
cluding joint,				
rginal, and				
ditional relative				
quencies).				
cognize possible				
ociations and				
nds in the data.				
rg nd qu co	uding joint, inal, and itional relative uencies). gnize possible ciations and	ext of the data uding joint, inal, and itional relative uencies). gnize possible ciations and	ext of the data uding joint, inal, and itional relative encies). gnize possible ciations and	ext of the data uding joint, inal, and itional relative uencies). gnize possible ciations and

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
S-ID.6. Represent data	S-ID.B.6. Represent	S-ID.B.6. Represent	•		There is no progression for
on two quantitative	data on two	data on two			this requirement to the
variables on a scatter	quantitative variables	quantitative variables			functions addressed in Alg II.
plot, and describe	on a scatter plot, and	on a scatter plot, and			NOTE: Since 6b and 6c were
how the variables are	describe how the	describe how the			removed, there are no
related.	variables are related.	variables are related.			gradations of this
					requirement included in the
					NYS. It is possible that those
					cold be used to explain the
					progression for this stem
					standard.
					Since the header for this
					domain in Alg II includes a
					modeling indicator, it is
					assumed that this standard
					would also require modeling.
					The connection to
					mathematical modeling
					should be made more clear.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
S-ID.6a Fit a function	S-ID.B.6a. Fit a	S-ID.B.6a. Fit a			The NYS Alg I standard
to the data; use	function to real-world	function to real-world			matched all the requirements
functions fitted to	data; use functions	data; use functions			of the CCSS and added the
data to solve	fitted to data to solve	fitted to data to solve			requirement to use a
problems in the	problems in the	problems in the			calculator to find regression
context of the data.	context of the data.	context of the data.			equations. [Note: the
Use given functions or	Use <mark>the</mark> given	Use given functions or			addition of "the" gives the
choose a function	functions or choose a	choose a function			appearance that specific
suggested by the	function suggested by	suggested by the			functions are to be provided.
context. Emphasize	the context.	context.			It is not clear why the article
linear, quadratic, and	Algebra I emphasis is				was added.]
exponential models.	on linear, quadratic,				
	and exponential				It is not clear in the NYS how
	models and includes				the Alg II version of this
	the regression				standard will show
	capabilities of the				progression from Alg I. Also,
	calculator.				is it expected that Alg II
					students will not be using a
					calculator?
					Since the header for this
					domain in Alg II includes a
					modeling indicator, it is
					assumed that this standard
					would also require modeling.
					The connection to
					mathematical modeling
					should be made more clear.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
S-ID.6b Informally					In the notes, NYS suggests
assess the fit of a					that this standard belongs in
function by plotting					a statistics class. This
and analyzing					requirement might be
residuals.					identified for Alg II as a way
					of differentiating between Alg
					I and II.
S-ID.6c Fit a linear					According to the notes, NYC
function for a scatter					intends that this is contained
plot that suggests a					in S-ID.B.6 and S-ID.C.8. This
linear association.					seems reasonable.
Interpret linear	C. Interpret linear				
models	models.				
S-ID.7. Interpret the	S-ID.C.7. Interpret the				
slope (rate of change)	slope (rate of change)				
and the intercept	and the intercept				
(constant term) of a	(constant term) of a				
linear model in the	linear model in the				
context of the data.	context of the data.				
S-ID.8. Compute	S-ID.C.8. Calculate				•
(using technology)	(using technology)				
and interpret the	and interpret the				
correlation coefficient	correlation coefficient				
of a linear fit.	of a linear fit.				

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
S-ID.9. Distinguish	S-ID.C.9. Distinguish	S-IC.B.6b. Use the	•		In NYS Alg II, this CCSS was
between correlation	between correlation	language of statistics			deleted. However the
and causation.	and causation.	to critique claims from			additional substandard for S-
		informational texts.			ID.B.6 is related.
		For example, <u>cause</u>			
		and effect vs			
		<u>correlation</u> , bias,			
		measures of center			
		and spread.			
Making Inferences		Making Inferences			NYS added a modeling
and Justifying		and Justifying			indicator to the cluster title,
Conclusions		Conclusions (S-IC) ★			which would apply to all
					standards below.
Understand and		A. Understand and			Clarity: Will this cluster title
evaluate random		evaluate random			be treated as a standard by
processes underlying		processes underlying			teachers? If not likely, this
statistical experiments		statistical			should not be used to replace
		experiments.			S-IC.1.

NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
				NYS removed this standard
				stating it is redundant with
				the cluster title. However, all
				standards <i>should</i> have
				redundancy with the cluster
				title. Standards are what are
				measured, the clusters inform
				the standards. How will this
				understanding be addressed
				if it is not included in the
				standards? [Note: the
				concept of randomness was
				removed elsewhere, as well.]

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
S-IC.2. Decide if a		S-IC.A.2. Determine if	•		NYS changed the wording of
specified model is		a statistic (i.e. sample			this CCSS but with similar
consistent with results		proportion, difference			expectations. In addition to
from a given data-		of sample			using simulations, NYS
generating process,		proportions, sample			clarifies the focus by adding,
e.g., using simulation.		mean, and difference			"For the purposes of this
For example, a model		of sample means) is			course, if the statistic falls
says a spinning coin		likely to occur based			within two standard
falls heads up with		on a given simulation.			deviations of the mean (95%
probability 0.5. Would		For the purposes of			interval centered on the
a result of 5 tails in a		this course, if the			mean), then the statistic is
row cause you to		statistic falls within			considered likely (plausible,
question the model?		two standard			usual)."
		deviations of the			
		mean (95% interval			Since the title for this cluster
		centered on the			in Alg II includes a modeling
		mean), then the			indicator, it is assumed that
		statistic is considered			this standard would also
		likely (plausible, usual).			require modeling. The
					connection to mathematical
					modeling should be made
					more clear.
Make inferences and		B. Make inferences			
justify conclusions		and justify			
from sample surveys,		conclusions from			
experiments, and		sample surveys,			
observational studies		experiments, and			
		observational studies.			

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
S-IC.3. Recognize the		S-IC.B.3. Recognize			Since the header for this
purposes of and		the purposes of and			cluster in Alg II includes a
differences among		differences among			modeling indicator, it is
sample surveys,		surveys, experiments,			assumed that this standard
experiments, and		and observational			would also require modeling.
observational studies;		studies. Explain how			The connection to
explain how		randomization relates			mathematical modeling
randomization relates		to each.			should be made more clear.
to each.					
S-IC.4. Use data from		S-IC.B.4. Given a			NYS changed the wording of
a sample survey to		simulation model			this standard to improve
estimate a population		based on a sample,			clarity.
mean or proportion;		construct the 95%			
develop a margin of		interval centered on			Since the header for this
error through the use		the mean (mean +/-			cluster in Alg II includes a
of simulation models		two standard			modeling indicator, it is
for random sampling.		deviations) and			assumed that this standard
		determine if a			would also require modeling.
		suggested parameter			The connection to
		is plausible.			mathematical modeling
					should be made more clear.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
S-IC.5. Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.			•	•	NYS stated in the notes that this concept was incorporated into S-IC.A.2. However, randomization is not clearly addressed there or elsewhere. This deletion may warrant a second look.
S-IC.6. Evaluate reports based on data.		S-IC.B.6a. Use the language of statistics to draw conclusions from numerical summaries.			NYS provides more detail about both the types of reports and the types of evaluation, in addition to specifically calling out the use of the language of statistics.
		S-IC.B.6b. Use the language of statistics to critique claims from informational texts. For example, cause and effect vs correlation, bias, measures of center and spread.	•		This NYS is also aligned partially to S-ID.9.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
Conditional		Conditional			NYS added a modeling
Probability and the		Probability and the			indicator to the cluster title,
Rules of Probability		Rules of Probability (S-			which would apply to all
		CP)★			standards below. The
					modeling connection should
					be made more clear.
Understand			•		
independence and					
conditional					
probability and use					
them to interpret data					
S.CP.1. Describe		S-CP.A.1. Describe			Since the header for this
events as subsets of a		events as subsets of a			cluster in Alg II includes a
sample space (the set		sample space (the set			modeling indicator, it is
of outcomes) using		of outcomes) using			assumed that this standard
characteristics (or		characteristics (or			would also require modeling.
categories) of the		categories) of the			The connection to
outcomes, or as		outcomes, or as			mathematical modeling
unions, intersections,		unions, intersections,			should be made more clear.
or complements of		or complements of			
other events ("or,"		other events ("or,"			
"and," "not").		"and," "not").			

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
S-CP.2. Understand		S-CP.A.2.Within a			NYS removed the conceptual
that two events A and		given context,			understanding part of the
B are independent if		determine if two			CCSS and added parts ii and
the probability of A		events A and B are			iii, which overlap to align with
and B occurring		independent <mark>by</mark>			the changes in S-CP.A.3.
together is the		showing:			
product of their		i) the probability of A			Since the header for this
probabilities, and use		and B occurring			cluster in Alg II includes a
this characterization		together is the			modeling indicator, it is
to determine if they		product of their			assumed that this standard
are independent.		probabilities (P(A and			would also require modeling.
		B)=P(A) x P(B));			The connection to
		ii) the probability of A			mathematical modeling
		given B is same as the			should be made more clear.
		probability of A			
		(P(A B)=P(A)); or			
		iii) the probability of B			
		given A is the same as			
		the probability of B			
		(P(B A)=P(B)).			
				1	<u> </u>

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
S-CP.3. Understand		S-CP.A.3. Calculate	•		NYS changed "understand" to
<mark>the</mark> conditional		and determine the			"calculate and determine"
probability of A given		conditional probability			and moved the independence
B as P (A and		of A given B <mark>in the</mark>			to S-CP.A.2. It is unclear,
<i>B</i>)/ <i>P</i> (<i>B</i>), a <mark>nd</mark>		context of a model.			though, what is meant by "in
interpret					the context of a model" - is
independence of A					this about a model in a
and <i>B</i> as saying that					context or is it about a task in
the conditional					a real-life context?
probability of A given					
B is the same as the					Since the header for this
probability of A, and					cluster in Alg II includes a
the conditional					modeling indicator, it is
probability of B given					assumed that this standard
A is the same as the					would also require modeling.
probability of B.					The connection to
					mathematical modeling
					should be made more clear.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
S-CP.4. Construct and		S-CP.A.4. Construct			NYS removed the CCSS
interpret two-way		and interpret two-way			examples.
frequency tables of data		frequency tables of			
when two categories are		data when two			Since the header for this
associated with each		categories are			cluster in Alg II includes a
object being classified.		associated with each			modeling indicator, it is
Use the two-way table as					assumed that this standard
a sample space to decide		object being classified.			
if events are		Use the two-way table			would also require modeling.
independent and to		as a sample space to			The connection to
approximate conditional		decide if events are			mathematical modeling
probabilities. <i>For</i>		independent and			should be made more clear.
example, collect data		calculate conditional			
from a random sample		probabilities.			
of students in your					
school on their favorite					
subject among math,					
science, and English.					
Estimate the probability that a randomly					
selected student from					
your school will favor					
science given that the					
student is in tenth					
grade. Do the same for					
other subjects and					
compare the results.					

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
S-CP.5. Recognize and					NYS stated in the notes that
explain the concepts					this standard was "combined
of conditional					with other standards in the
probability and					cluster for clarity" but the
independence in					accommodation is not clear.
everyday language					
and everyday					
situations. For					
example, compare the					
chance of having lung					
cancer if you are a					
smoker with the					
chance of being a					
smoker if you have					
lung cancer.					
Use the rules of		B. Use the rules of			
probability to		probability to			
compute probabilities		compute probabilities			
of compound events		of compound events			
in a uniform		in a uniform			
probability model		probability model.			

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
S-CP.6. Find the conditional probability of <i>A</i> given <i>B</i> as the fraction of <i>B</i> 's outcomes that also belong to <i>A</i> , and interpret the answer in terms of the model.					NYS stated in the notes that this standard was "combined with other standards in the cluster for clarity" but the accommodation is not clear.
S-CP.7. Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model.	•	S-CP.B.7. Apply the Addition Rule, P (A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model.		•	Since the header for this cluster in Alg II includes a modeling indicator, it is assumed that this standard would also require modeling. The connection to mathematical modeling should be made more clear.
S-CP.8. (+) Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P(B A) = P(B)P(A B), and interpret the answer in terms of the model.	•	•	•	•	NYS stated that this concept was merged with S.CP.A.3 in Alg II, though the connection will likely need to be clearer.

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
S-CP.9. (+) Use	•	•	•	S-CP.B.9+ Solve	NYS change the wording
permutations and				problems using	slightly with no change to
combinations to				permutations and	meaning or rigor.
compute probabilities				combinations to	
of compound events				compute probabilities	
and solve problems.				of compound events.	
Using Probability to					
Make Decisions					
				A. Calculate expected	
Calculate expected				values and use them	
values and use them				to solve problems.	
to solve problems					
S-MD.1. (+) <mark>Define</mark> a			•	S-MD.A.1+ Graph a	NYS removed the
random variable for a				probability	requirement to define the
quantity of interest by				distribution for a	random variable and the
assigning a numerical				discrete random	explanation for displays. They
value to each event in				variable based on	combined empirical and
a sample space; graph				either empirical or	theoretical probability,
the corresponding				theoretical	embedding the expectations
probability				probabilities.	in S-MD.3 and S-MD.4.
distribution using the					
same graphical					
displays as for data					
distributions.					

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
S-MD.2. (+) Calculate			•	S-MD.A.2+ Calculate	NYS removed the "interpret it
the expected value of				and interpret the	as the mean of the
a random variable;				expected value of a	probability distribution"
interpret it as the				random variable.	requirement.
mean of the					
probability					
distribution.					

probability"is addressed in S.MD.A.1 (+)distribution for a"is addressed in S.MD.A.1 (+)random variableImage: State in S.MD.A.2 (+)."defined for a sampleImage: State in Whichspace in whichImage: State in WhichtheoreticalImage: State in Whichprobabilities can beImage: State in Whichcalculated; find theImage: State in Whichexpected value. ForImage: State in Whichexpected value. ForImage: State in Whichtheoretical probabilitiesImage: State in Whichumber of correctImage: State in Which in Wh	CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
distribution for a random variable defined for a sample space in which space in which theoretical probabilities can be calculated; find the expected value. For example, find the expected value. For example, find the theoretical probability distribution for the number of correct answers obtained by guessing on all five questions of a multiple-choice test where each question has four choices, and has been choiced and the expected que to the ortex of the orte	S-MD.3. (+) Develop a					NYS stated that this concept
random variable defined for a sample space in which theoretical probabilities can be calculated; find the expected value. For example, find the theoretical probability distribution for the number of correct answers obtained by guessing on all five where each question distribution for the numble-choice test where each question has four choices, and find the expectedImage: State of the st	probability					"is addressed in S.MD.A.1 (+)
defined for a sampleanalysisanalysisspace in whichanalysisanalysistheoreticalanalysisanalysisprobabilities can beanalysisanalysiscalculated; find theanalysisanalysisexpected value. Foranalysisanalysisexample, find theanalysisanalysistheoretical probabilityanalysisanalysisdistribution for theanalysisanalysisnumber of correctanalysisanalysisguessing on all fiveanalysisanalysiswhere each questionanalysisanalysishas four choices, andanalysisanalysisfind the expectedanalysisanalysisgrade under variousanalysisanalysis	distribution for a					and S.MD.A2 (+)."
space in which theoreticalImage: space in which theoreticalprobabilities can be calculated; find the expected value. For example, find the theoretical probabilityImage: space in which image: space in which image: space in which image: space in which which is space in which where each question image: space in which where each question <br< th=""><th>random variable</th><th></th><th></th><th></th><th></th><th></th></br<>	random variable					
theoreticalImage: state	defined for a sample					
probabilities can be calculated; find the expected value. For example, find the theoretical probability distribution for the number of correct answers obtained by guessing on all five questions of a multiple-choice test where each question has four choices, and find the expected <t< th=""><th>space in which</th><th></th><th></th><th></th><th></th><th></th></t<>	space in which					
calculated; find theexpected value. Forexpected value. Forexample, find theexample, find theexample, find thetheoretical probabilityexample, find thedistribution for theexample, find thenumber of correctexample, find theanswers obtained byexample, find theguessing on all fiveexample, find thequestions of aexample, find thewhere each questionexample, find thehas four choices, andexample, find the expectedguest under variousexample, find the expected	theoretical					
expected value. For example, find the theoretical probability distribution for the number of correct answers obtained by guessing on all five questions of a multiple-choice test where each question has four choices, and find the expectedII	probabilities can be					
example, find the theoretical probability distribution for the number of correctImage: Sing on all five questions of a multiple-choice testImage: Sing on all five questionsImage: Sing on all five questions of a multiple-choice testImage: Sing on all five questionImage: Sing on all five questionsImage: Sing on all five questionImage: Sing on all five question<	calculated; find the					
theoretical probability distribution for the number of correctImage: Sing on all five questions of a multiple-choice testImage: Sing on all five questions of aImage: Sing on all five questions of aImage: Sing on all five questions of a multiple-choice testImage: Sing on all five question for the questions of aImage: Sing on all five questions of a </th <th>expected value. For</th> <th></th> <th></th> <th></th> <th></th> <th></th>	expected value. For					
distribution for the number of correctended<<<endedendedendedendedendedendedendedendedendedendedendedendedendedendedendedendeden	example, find the					
number of correctanswers obtained byanswers obtained byanswers obtained byanswers obtained byguessing on all fiveanswers obtained byanswers obtained byanswers obtained byquestions of aanswers obtained byanswers obtained byanswers obtained bywhere each questionanswers obtained byanswers obtained byanswers obtained byhas four choices, andanswers obtained byanswers obtained byanswers obtained byfind the expectedanswers obtained byanswers obtained byanswers obtained bygrade under variousanswers obtained byanswers obtained byanswers obtained by	theoretical probability					
answers obtained by guessing on all five questions of aAAAmultiple-choice test where each question find the expectedAAAfind the expected grade under variousAAA	distribution for the					
guessing on all fiveand and an an and an an and an an and an an an and an and an an an and an an an and an	number of correct					
questions of aand and an an and an and an and an and an and an and an an and an and an	answers obtained by					
multiple-choice testAnd Comparisonwhere each questionAnd Comparisonhas four choices, andAnd Comparisonfind the expectedAnd Comparisongrade under variousAnd Comparison	guessing on all five					
where each questionAnd the spectedAnd the expectedAnd the expectedgrade under variousAnd the expect of the spectedAnd the expect of the spectedAnd the expect of the spected	questions of a					
has four choices, and find the expected for the spectrum of th	multiple-choice test					
find the expected grade under various						
grade under various						
grading schemes.						
	grading schemes.					

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
S-MD.4. (+) Develop a					NYS stated that this concept
probability					"is addressed in S.MD.A.1 (+)
distribution for a					and S.MD.A2 (+)."
random variable					
defined for a sample					
space in which					
probabilities are					
assigned empirically;					
find the expected					
value. For example,					
find a current data					
distribution on the					
number of TV sets per					
household in the					
United States, and					
calculate the					
expected number of					
sets per household.					
How many TV sets					
would you expect to					
find in 100 randomly					
selected households?					
Use probability to				B. Use probability to	
evaluate outcomes of				evaluate outcomes of	
decisions				decisions.	

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
S-MD.5. (+) Weigh the	•	•	•	S-MD.B.5+ Use	NYS reworded the standard
possible outcomes of				expected values from	and removed pay off values.
a decision by assigning				probability	
probabilities to payoff				distributions to	
values and finding				evaluate and compare	
expected values.				the outcomes of	
				decisions.	
S-MD.5a (+) Find the	•				NYS stated that this concept
expected payoff for a					"is already addressed in
game of chance. For					S.MD.B.5+."
example, find the					
expected winnings					
from a state lottery					
ticket or a game at a					
fast- food restaurant.					

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
S-MD.5b (+) Evaluate	•				NYS stated that this concept
and compare					"is already addressed
strategies on the basis					S.MD.B.5+."
of expected values.					
For example, compare					
a high-deductible					
versus a low-					
deductible					
automobile insurance					
policy using various,					
but reasonable,					
chances of having a					
minor or a major					
accident.					
S-MD.6. (+) Use			•	S-MD.B.6+ Use	NYS changed the CCSS
probabilities to make				probabilities to make	examples.
fair decisions (e.g.,				fair decisions. Such as,	
drawing by lots, using				determine if a	
a random number				decision making	
generator).				strategy produces	
				equally probable	
				outcomes.	

CCSS/NY HS	NYS ALG I	NYS ALG II	NYS GEO	Plus	Notes and Comments
S-MD.7. (+) Analyze				S-MD.B.7+ Using	NYS changed the CCSS
decisions and				probability concepts,	examples. Clarity: This
strategies using				evaluate decisions and	example may need more
probability concepts				strategies. Such as,	explanation to be understood
(e.g., product testing,				make decisions based	and to ensure consistent
medical testing,				on the most favorable	application of this standard.
pulling a hockey goalie				outcome.	
at the end of a game).					